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Introduction.  In this paper we consider the following problem. 
Let X  be a real reflexive Banach space endowed with partial order ≤ ,  

which is a vector lattice under this order, V X⊂  is a closed subspace and 
sublattice,  let A  be a mapping from X  to V ′ – the dual space of V , L V ′∈ , 

, Xϕ ψ ∈ . Our aim is to find u Kϕ
ψ∈  such that 

, 0Au L v u− − ≥    v Kϕ
ψ∀ ∈ , 

where 
{ }:K u V   vϕ

ψ ψ ϕ= ∈ ≤ ≤  

and ,⋅ ⋅  is  usual pairing between V  and V ′ . 
The main result of this paper is the following statement (see Theorem 3). 
If the operator A  is coercive, strictly T-monotone and hemi-continuous 

acting from X  to V ′  (for the definitions we refer the reader to section 4), then the 
following two side estimates hold: 

L A Au L Aϕ ψ∧ ≤ ≤ ∨   in  *V , 
where u  is the unique solution of the above problem. Here *V  is the order dual of 
V  (for the definitions see the sections 3 and 4). 

For this kind of estimates for one obstacle problem see [1, 2]. 
Preliminary background.  Let E  be a linear topological space and C  be a 

nonempty closed and convex subset of E . 
Definition 1.  A function :g C C R× →  is called monotone, if ( , ) 0g v v ≤  for 

every v C∈  and 
                                          ( , ) ( , ) 0g v w g w v+ ≥  ,v w C∀ ∈ .                                   (1) 
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g is called strictly monotone, if it is monotone and strict inequality holds in (1), if 
v w≠ . 

Note that for a monotone function g we have ( , ) 0g v v =  for every v C∈ . 
Definition 2.  A function :f E R→  is called  lower (upper) semi-continuous 

at 0t E∈ ,  if  

( ) ( )
0

0 liminf
t t

f t f t
→

≤    ( ) ( )
0

0 limsup
t t

f t f t
→

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
. 

Definition 3.  A function :g C C R× →   is called hemi-continuous, if 
i. ( , ) 0g v v ≤  for every v C∈ ; 

ii. for every ,v w C∈  the function , :[0,1]v wg R→  defined by 

( ) ( ), ( ),v wg t g v t w v w= + −  is lower semi-continuous at 0t = . 

Remark 1. We recall that a map A C E′: → , where C  is a convex subset of 
E , is said to be hemi-continuous, if it is continuous from the line segment of C  to 
the weak topology of E′ . Clearly, if A  is hemi-continuous from C  to E′ , then the 
function g , given by ( , ) ,g v w Av v w= −  v w C∀ , ∈ , is hemi-continuous.    

The next theorem is a classical result about the existence and uniqueness of 
one obstacle problem for monotone and hemi-continuous mappings. For the proof 
of this theorem we refer to [2].  

T h e o r e m  1 .  Let E  be a Hausdorff topological space, C  be a closed 
convex subset of E , : E Rψ →  be convex and lower semi-continuous and let 
g C C R: × →  be a monotone, hemi-continuous mapping such that ( )g v,⋅  is 
convex and upper semi-continuous for each v C∈ . Let us assume also that there is 
a compact subset B  of E  and 0w B C∈ ∩ , such that  

0 0( ) ( , ) ( )v g v w wψ ψ+ >  for all \v C B∈ . 
Then the set of all solutions v  of the problem 

                                       
,

( ) ( ) ( )
v C                                         

v g v w w  w Cψ ψ
∈⎧

⎨ + , ≤ , ∀ ∈⎩
                                   (2) 

is a non-empty convex compact subset of B C∩ . Moreover, if g  is strictly 
monotone, then the problem (2) has unique solution. 

Ordered Banach spaces.  Let X  be a real Banach space, and ≤  be a partial 
order relation in X  induced by a closed positive cone  
                                       { }0P v X v= ∈ : ≥ .                                               (3) 

We assume that X  is a vector lattice with this ordering. That is, any two 
vectors u  and v  of X  have a common least upper bound, denoted by u v∨ , and a 
common greatest lower bound denoted by u v∧ . Then every vector v X∈  can be 
decomposed as  
                                            v v v+ −= − ,                                                      (4) 
where 0v v+ = ∨  and 0v v− = − ∧  are the positive and negative parts of v , 
respectively. In other words, the positive cone (3) is generating, i.e. P P X− = .  

The decomposition (4) and its generalization  
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                                        v w v w v w     v w X+ = ∨ + ∧ , , ∈ ,                                     (5) 
are obtained from the identity 
                      ( ) ( )v w z v z w z    v w z X∨ + = + ∨ + , , , ∈ .                              (6) 

In particular, (5) follows from (6) if we take z v w= − −  (note that 
( ) ( ) ( ) ( )w v w v v w− ∨ − = − ∧ = − ∧ ). From (6) we also obtain the identities  
                              ( ) ( )v w v w v w v w+ +∨ = + − = + − ,                                (7) 

                             ( ) ( )v w v v w w w v+ +∧ = − − = − − ,                                (8) 
that will be often used below.    

Recall that a lattice X  is said to be complete, if every subset Z X⊂  with an 
upper bound possesses a least upper bound, denoted by Z∨ .   If V  is a subspace of 
X , we say that V  is a sublattice of X , if for any two vectors v  and w  of V , the 
elements v w∧  and v w∨ , formed in X  also belong to V . 

For such V  we denote the order dual of V  by V ∗ , which is the (closed) 
subspace of the dual  space V ′ , generated by positive cone  
                              { }0P v V v v  v P′ ′ ′ ′= ∈ : , ≥ ∀ ∈ ,                                  (9) 
the pairing appearing in (9) being the duality pairing of V  and V ′ . In other words,  

V P P∗ ′ ′= − .  
The order dual V ∗  will not, in general, coincide with the whole dual space 

V ′  (see the example below).  
*V  is a vector lattice under the dual ordering, that is, the partial ordering 

induced by the (closed) positive cone (9). In particular, for arbitrary v′  and w′  in 
V ∗  we can define v w′ ′∧  and v w′ ′∨ , both elements of V ∗ , and we have as above 
the identities  

( ) ( )v w v w v w v w+ +′ ′ ′ ′ ′ ′ ′ ′∨ = + − = + − , 

( ) ( )v w v v w w w v+ +′ ′ ′ ′ ′ ′ ′ ′∧ = − − = − − .  
Example. In applications to variational and quasi-variational inequalities for 

linear second order (elliptic) PDE in divergence form, the space X  usually will be 
the Sobolev space 1( )H Ω , where Ω  is a smooth bounded open subset of nR , and 

V  will be either the Sobolev space 1
0 ( )H Ω , or any closed subspace of 1( )H Ω  

such that  
                                                 1 1

0 ( ) ( )H V HΩ Ω⊂ ⊂ .                                          (10) 
Under the following order,  
                                     ( ) ( )u v u x v x≤ ⇔ ≤  a.e. x Ω∈ ,                                 (11) 
the space 1( )X H Ω=  is a vector lattice, and the positive cone (3) is closed (see 

[3]). Note that 1( )H Ω  can be identified with a sublattice of 2 ( )L Ω , which is 
complete lattice with respect to (11) (see [4]). The subspace V  satisfying (10) is 
usually defined in terms of the boundary conditions for the problem at hand. 
Moreover, one should not forget that V  was a sublattice of 1( )X H Ω= . 

Particularly, the subspace 1
0 ( )H Ω  satisfies the Dirichlet’s boundary conditions.  
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If 1
0 ( )V H Ω= , then 1( )V H Ω−′ = . In this case v V′ ′∈  is a positive element 

for the dual ordering, if and only if v′  is a positive distribution. Hence v′  is a 
positive (Radon) measure in Ω , belonging to 1( )H Ω− . The order dual of 1

0 ( )H Ω  
is thus the closed subspace of all distributions in 1( )H Ω− , which may be 
represented as the difference of two positive measures in Ω .  

T-monotone operators.  Let X  be a real reflexive Banach space, which is a 
vector lattice for the partial ordering induced by a closed positive cone (3), and let 
X ′  be the dual space of X .    

Definition 4. We say that the operator A X X ′: →  is  
a) monotone, if   

            0 for allAu Av u v     u v X− , − ≥ , ∈ ,                                 (12) 
b) strictly monotone, if  it is monotone and strict inequality holds in (12) 

when u v≠ ,  
c) hemi-continuous, if the map ( )t A u tv w+ ,  is continuous on [0,1]  for 

all u v w X, , ∈ , 
d) coercive, if there exists a 0w X∈  such that  

0lim
u

Au u w
  u X

u→∞

, −
= +∞, ∈ .  

Assume that we are given a closed subspace V  of X , which is a sublattice 
in X . We consider the map A X V ′: →  from the space X  to the dual V ′  of V .    

Definition 5. We will say that A  is T-monotone, if  
                                      ( ) 0Au Av u v +− , − ≥                                          (13) 

for every u v X, ∈  such that ( )u v V+− ∈ . A  is said to be strictly T-monotone, if it 
is T-monotone and  if ( ) 0u v +− =  whenever the equality holds in (13).  

The pairing in (13), as all pairings below, is the duality pairing between V  
and its dual space V ′ .    

Lemma 1. If the operator A X V ′: →  is T-monotone (strictly T-monotone), 
then its restriction to V  is a monotone (strictly monotone) operator from V  to V ′ .    

For the proof of this Lemma we refer to [2]. 
Example. Let Ω  be a bounded subset in nR  and  

             
1 1

( ) ( ( ) ( ) ( ) )
i j j

n n

ij x x j x
i j j

a u v a x u v b x u v c x uv dx
Ω

, = =
, = + +∑ ∑∫               (14) 

with ( )ij ja b c L Ω∞, , ∈ ,  ( ) 0 a.e. inc x     Ω≥ , and suppose there is a constant 0 0γ >  
such as 

2
0

1
( ) a.e. 

n
n

ij i j
i j

a x    x Rξ ξ γ ξ Ω ξ
, =

≥ | | ∈ ,∀ ∈ .∑  

Let V  be any closed subspace of the Sobolev space 1( )H Ω , satisfying (10), 
such that for some 0γ >   

                                  1
2

( )( ) Ha v v v   v VΩγ, ≥ ∀ ∈ .                                     (15) 
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If 1
0 ( )V H Ω= , (15) follows from the above assumptions on the coefficients 

of the form. If 1( )V H Ω= , then (15) still holds provided  

0( ) 0 a.e.c x c     x Ω≥ > ∈ .  
The identity  

1( ) ( )Au v a u v    u H v VΩ, = , , ∈ , ∈  

defines a (linear) strictly T-monotone operator from 1( )X H Ω=  to V ′ .  
It is a consequence of the following property of the form (14):  

                          1( ) 0 for  every ( )a w w     w H Ω+ −, = ∈ .                            (16) 
In fact we have  

( ) ( ( ) )Au Av u v a u v u v+ +− , − = − , −  

therefore, due to (16) and (15),  
2

( ( ) ) (( ) ( ) ) ( )
V

a u v u v a u v u v u vγ+ + + +− , − = − , − ≥ −  

whenever ( )u v V+− ∈ . The latter assumption is provided, for example, in case 
1
0 ( )V H Ω= , if 1( )u v H Ω, ∈ , 0u v− ≤  a.e. on the boundary Γ  of Ω .  
Note that under the above assumptions, the restriction of A  to V  is, by (15), 

a coercive continuous linear operator from V  to V ′ .  
For more examples of T-monotone operators we refer to [5].  
Two side estimates. 
T h e o r e m  2 .  Let X  be a real reflexive Banach space, C  be a convex, 

closed subset of X , A  be a coercive, monotone and hemi-continuous mapping 
from C  to the dual X ′  of X . Then for every functional L X ′∈  the set of all v  
satisfying  

                             
v C                                         

Av v w L v w   w C
∈⎧

⎨ , − ≤ , − ∀ ∈⎩
                                (17) 

is a non-empty bounded, closed, convex subset of C . Moreover, if A  is strictly 
monotone then the above problem has unique solution.    

Proof.  Apply Theorem 1 with E X=  with the weak topology, Lψ = −  ( X  
is reflexive) and ( )g v w Av v w, = , − , v w C, ∈ . Since A  is monotone and hemi-
continuous, so g  is also monotone and hemi-continuous (see Remark 1). Since A  
is coercive too, then g  satisfies to the following condition: there is a compact 
subset B  of E X=  and a 0w B C∈ ∩ , such that  

0 0( ) ( , ) ( )v g v w wψ ψ+ >  for all \v C B∈ . 
We can obtain this by taking 0w  as the vector appearing in definition 4.d) 

and { }B v X v R= ∈ : ≤  with 0R >  sufficiently large.  
If A  is strictly monotone, so is g , hence the problem (17) has unique 

solution.     
Remark 2. For a real ordered Banach space V  and for elements Vϕ ψ, ∈ , 

we define the set  
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{ }K u V uϕ
ψ ψ ϕ= ∈ : ≤ ≤ .  

It is easy to see that Kϕ
ψ  is a closed convex subset of .V  We consider the 

following problem: find u Kϕ
ψ∈  such that  

0Au L v u    v Kϕ
ψ− , − ≥ , ∀ ∈ .  

If A  and L  are as in the previous Theorem then this problem has unique 
solution.    

Remark 3. For 1 2,L L V ′∈  we say 1 2L L≥ , if 1 2L L P′− ∈ . 
T h e o r e m  3  (Two side estimates). Let X  be a real reflexive ordered 

Banach space, V – closed subspace of X , which is a sublattice of X , A  be a 
coercive, strictly T-monotone and hemi-continuous mapping from X  to V ′ . Let 
two elements , Xϕ ψ ∈ , ψ ϕ≤  be given, and let L V ′∈ . Suppose that  
                          such that  and inV   L   A     VΛ Λ Λ ψ′ ′∃ ∈ ≥ ≥ ,                       (18) 
                            such that and inV    L   A     Vλ λ λ ϕ′ ′∃ ∈ ≤ ≤ ,                        (19) 
and  
                                    ( )v V   v Vψ +− ∈ ∀ ∈ ,                                             (20) 

                                     ( )v V   v Vϕ +− ∈ ∀ ∈ .                                            (21) 
Then if u  is the solution of  
                      0u K   Au L v u    v Kϕ ϕ

ψ ψ∈ : − , − ≥ ∀ ∈ ,                              (22) 
where  
                                   { }K u V uϕ

ψ ψ ϕ= ∈ : ≤ ≤ ,                                        (23) 
then one has the following two side estimate  
                                       inAu     Vλ Λ ′≤ ≤ .                                             (24) 

In particular, if L A Aϕ ψ, ,  belong to the order dual V ∗  of V , one has also 

Au V ∗∈  and (24) becomes  
                                           inL A Au L A    Vϕ ψ ∗∧ ≤ ≤ ∨ .                                    (25) 

Proof. This last assertion holds, since, if L A A Vϕ ψ ∗, , ∈ , one can take 

( )L A L L Aλ ϕ ϕ += ∧ = − −  (see (8)) and ( )L A L A LΛ ψ ψ += ∨ = + −  (see (7)) in 
(24) .  

To prove the upper bound of (24) we recall the Theorem 2 and consider the 
unique solution z V∈  of auxiliary variational inequality  
                       0z u   Az w z   w V w uΛ≤ : − , − ≥ ∀ ∈ , ≤ .                        (26) 

It is enough to prove that z u= , since then taking w u v= −  in (26) for an 
arbitrary 0v ≥ , we obtain  

0 in Au Az    VΛ Λ ′− = − ≤ .  
To prove that z u= , let us first prove that z ψ≥ . Due to (20) and taking 

( )w z z z uψ ψ+= + − = ∨ ≤  in (26), we get  

( ) 0Az zΛ ψ +− , − ≤ .  
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Hence, since AΛ ψ≥ , one gets  

( ) ( ) 0A z Az zψ Λ ψ Λ ψ+ +− , − + − , − ≤ , 

which by the strict T-monotonicity of A  implies that ( ) 0zψ +− = . This means that 
z ψ≥ .  

Let us now prove that z u≥ . Since u  solves (22) and in (26) z u≤ , then 
z ϕ≤ . In other words z Kϕ

ψ∈ . Take ( )w z u z u z u+= ∨ = + − ≤  in (26) and 

( )v u z u u z ψ+= ∧ = − − ≥  in (22). Summing the obtained inequalities and using 
LΛ ≥  from (18), we have  

( ) ( ) 0Au Az u z L u zΛ+ +− , − ≤ − , − ≤ ,  

and, since A  is strictly T-monotone, it follows that ( ) 0u z +− =  and so z u≥ .  
So, the unique solution u  of (22) is also the unique solution of (26). We 

already know, that this implies the upper bound in (24).  
For obtaining the lower bound in (24), we recall again the Theorem 2 and 

consider the unique solution z V∈  of  auxiliary variational inequality  
                    0z u   Az w z   w V  w uλ≥ : − , − ≥ ∀ ∈ , ≥ .                           (27) 

The steps are similar as above. It is enough to prove that z u= , since taking 
w u v= +  in (27) for an arbitrary 0v ≥ , it will follow that 

0 inAu Az     Vλ λ ′− = − ≤ .  
To prove that z u= , let us first prove that z ϕ≤ . Due to (21) and taking 

( )w z z z uϕ ϕ+= − − = ∧ ≥  in (27), we get  

( ) 0Az zλ ϕ +− , − ≤ .  

Hence, since Aλ ϕ≤ , one gets  

( ) ( ) 0A z Az zλ ϕ ϕ λ ϕ+ +− , − + − , − ≤ ,  

which, due to the strict T-monotonicity of A , implies that ( )z ϕ +− =0. This means 
that z ϕ≤ .  

Let  us  now  prove  that  z u≤ .  Since  u   is  the  solution  for  (22)  and  in 
(27) z u≥ , one gets that z ψ≥ . In other words, z Kϕ

ψ∈ . Take 

( )w z u z z u u+= ∧ = − − ≥  in (27) and ( )v u z u z u ϕ+= ∨ = + − ≤  in (22). 
Substracting the obtained inequalities and using Lλ ≤  from (19), we have  

( ) ( ) 0Az Au z u L z uλ+ +− , − ≤ − , − ≤ ,  

and, since A  is strictly T-monotone, it follows that ( ) 0z u +− =  and so z u≤ .  
So, we have proved that the unique solution u of (22) is also the unique 

solution of (26) (we have already known that this implies the upper bound in (24)) 
and the unique solution of (27), which, as we see, implies the lower bound in (24). 
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Ռ. Ռ. Թեյմուրազյան 
 

Երկու խոչընդոտով խնդրի լուծման երկկողմանի գնահատականներ 
 

Աշխատանքում քննարկվում է երկու խոչընդոտով խնդիրը` ընդհանուր 
դրվածքով: Որոշակի պայմանների առկայության դեպքում ապացուցվում են 
երկկողմանի գնահատականներ այդ խնդրի լուծման համար: 

 
Р.Р. Теймуразян. 

 
Двусторонние  оценки  для  задачи  с  двумя  препятствиями 

                                                                                                                                    
В работе рассматривается задача с двумя препятствиями в абстрактной 

постановке. Доказываются двусторонние оценки для решения этой задачи при 
некоторых предположениях. 

 
 


