PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2009, Ne 1, p. 16-19
Mathematics

ON EULER TYPE EQUATION
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In the present paper an Euler type equation is considered and it is proved
that for ae[O,l) (ae(Zn—l,2n]) the characteristic polynomial has 2n real

roots.
For other values of « the issue concerning the number of the real roots of this
polynomial is investigated.
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We consider an Euler type equation
D"y~ 1y =0, @)

where 120,020, a#1,3,...,2n—1 and y,, :4_"1_[(21'—1—0:)2.

i=l
Note that the numbers y, , appear naturally, when one uses Hardy’s
inequality to estimate the scalar product (t“»™,y™)(see [1]). In [2] the
following statement was proved: the spectrum of the operator generated by
the differential expression t*“L:L,, ,, —L,, ,,, where Ly=(=1)"(t“y")"

b
and L, ,, ={ f ,jt“"z" f (t)|2 dt<oo}, is purely continuous and coincides with
0

the ray O'(tz"_“L)z[;/n’aﬁoo). The real roots of the characteristic polynomial

n—1
pAA)==D)"T[A-DA-n+a—-i)- Vna- Of the equation (1) were used in [3] to
i=0
study the oscillation problems concerning the equation
Ly=(=1)"(“y")" =y, 1"y =q(t)y .
Note that the numbers O0,1,..,n—1 and 2n-1-a,2n-2-a,...n—a

are symmetrical with respect to ?. After changing the variable
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2n—1-
:nTa—/l the polynomial p(A) gets the form

~ w2 —1-a 2i+l+a

SR RS T
i=1
_1 n o pn .

=(4n) [T -Qi-1-a))-7,,-
=1

After changing the variable x =4.” from the equation [7( ,u) =0 we get

f(x) =f[(x—(21'—1—04)2)—(—1)"(1—05)2(3—a)2 2n-1-a)*=0. (2)
i=1

Note that in general case the equation (2) hasno n real roots. For
example, when n =3 the equation (2) has the form

x(X—((1-a) +3B-a) +(-a))x+(1-a)(B-a) +
+G3-a)G-a)Y+1-a)’(5-a)*)=0.
It is easy to calculate the discriminant of the quadratic equation:
D=-3a"+36a’ —114a” + 360 +189 = =3(a + 1)(a — 7)(a - 3)*,
and, therefore, the quadratic equation for any « with large absolute value has two
complex roots.
Note also that x=0 for any value of « is a root of (2), and (2) doesn’t

change its form when one replaces @ with 2n—a . Therefore, it is enough to
consider only the case a <n.

Let us now prove that for o [O,l) the equation (2) alongside with the root

x=0 has also (n—1) positive roots. First we prove this statement for even
numbers, i.e. for n =2k . Let

g =(x-(1-a))x-B-a)’)(x-(2n-1-a)").
Obviously,
f((=a)) = f(B=a)) == f(4k-1-a)) =—(1-a)* -4k ~1-a)* <0. (3)
Now by induction we prove that f((4i)*)>0, i=1,2,....k. For i=1 we have
(4= zlk‘_f QRi+l1-a)*(7T-a)*(1-a)3-a)(4k -3 —-a)(4k—-1-a)x @
i=2
x32k(3—a’ +4ak)
and, therefore, f(4*)>0. Now assuming f((4i))*)>0, we prove that
F((4G+1)*)>0. It is enough to prove that f((4i+4)*)> f((4i)*), which is

g((4i+4)°)

equivalent to the inequality ——>1. Further
g((4)7)
g((4i+4)°) _(4i+4’ (-2’ (4i+4)’ ~(3-a)’)-((4i+4)’ -(4k—-1-a)’) _
g((4") (4" = (1= )" N(4)’ = (3= a)")-+((4i)’ —(4k ~1-a)")

_(4i+3+oz)(4i+1+ae)_(41‘+4k+1—05)(4A‘:+4i+3—05)>1
@i+3-a)di+l-a) 4i-4k+1+a)4i-4k+3+a)
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since (4i+3—-a)4i+1—a)>0 and (4i—4k+1+)(4i—4k+3+a)>0. Thus we

obtain that f((4i)*)>0,i=1,2,..,k. Now using inequality (3) and the first

Theorem of Bolzano—Cauchy, we conclude that the equation (2) has 2k —1
positive roots alongside with the root x=0. Using the form of the polynomial

p(u) and changing the variable ww —A, we conclude that the polynomial

2n—-1-a .
p(A) has 2n real roots, whereas nTa is a double root and the other roots are

. : 2n—1- :
symmetrical with respect to nTa. For odd numbers n=2k+1 the proof is

similar.

Now consider the case I<a<n. We’ll consider the cases
ae(4j-14j+1) and ae(4j-3,4j—-1) separately. Let n=2k and
ac(4j-3,4j—1). We'll show that £ ((4i+2)*)>0, i=01,..k-1.

For i =0 we have

f2H=0G-a)(E-a) - (4k-3-a) (e -4k -1-a)(1+a)(4k+1-a) -
—(a-D)(dk-1-a)),
that implies £(2%) > 0. Now we obtain as we did above
2((4i +6)*) _@i+5+a)di+3+a) (dk+4i+3-a)dk+4i+5-a)
2((4i+2)%) - 4i+5-a)di+3—-0o) ' 4k -4i-3-a)4k-4i-5-a)
since for « € (47 —3,4j —1) the denominators of the both fractions are positive and

>1,

obviously, both fractions are greater than one.

Note that (4k—1-a)* €((4k—4))*, (4k—-4j+2)*) and taking into
consideration the inequalities (3) and f((4i +2)*) >0, we conclude that (2) has at
least n—2j+1 positive roots alongside with the root x =0 . Hence the polynomial
p(A) has at least 2n—4j +4 real roots. Note that for j =1, i.e. for o €(1,3), the
situation is similar to the case a € [0,1) .

For n=2k and aec(4j—-1, 4j+1) instead of the points x = (4i+2)*we
take x =(4i)?, i=1,2,....k . Then we prove that f((4i)*)>0 and conclude that the
equation (2) has at least n—2j—1 real roots alongside with the root x=0. Thus
the polynomial p(A) has at least 2n—4; real roots.

Now we consider the case of odd numbers n=2k+1 and
ac(dj-1 4j+1).

As in the case a € [0,1) , we prove that £'(4*) <0 . Note that for i <k — j the
inequality

2((4i +4)%) _ i3+ a)4itlra) (4itdk+3-a)4i+dk+5-a)

2((41)%) @Gi+3-a)di+l-a) Gi-(Gk-D+a)di-(Ek+)+a)

immediately follows from the positiveness of both denominators. For i =k — j the
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denominator of the second fraction (4i—(4k —1)+a)(4i —(4k +1)+ ) is negative
((41' +3-a)4i+1-a)>0 forae(4j—-1,4j+1) and any z') , 1.e. by induction in i
we prove that f((4i)*)<0,i=1,2,..k—j. As a result we conclude that the
polynomial p(4) for ¢ €(4j—1,4j+1) has at least 2n—4;—2 real roots. We
prove analogously that the polynomial p(A4) for ¢ €(4j—-3,4j—1) has at least
2n—4j+2 real roots.

Unfortunately, similar considerations for & >2nr do not lead to the desired
result. For instance, for n=2k we get f(4°)<0, since in the expression (4)

3—a? +4ak <0.
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U. U. Ouhwynqu, L. M. Skthnjul
Entph whwh dh hwjuuwupdwt dwuht

“Yhunwnplynud £ Bjiph nhwh dh hwjuuwpdwb ptinipugphs puquuinudp b gnyg
E wpnud, np @ €[0,1) (@ €(2n-1,21]) nhwpnud wjt mh 22 hpwljwb wpdunnibp,
hull dnmu o -ubph hwdwp hbnwgnuuynid E hpwjut wpdwntbtph pwtwlh
hwngp:

C.A. Ocunosa, JLII. Tenosin

OO0 onHOM ypaBHeHUHU THHA Jiiitepa

B paGore paccmarpuBaeTcs ypaBHEHHe Tuma Jilliepa W IOKa3bIBACTCS, YTO MU
ae[0,1)(ae(2n-1,2n]) XapaKTEPUCTHYECKHMH TONMHOM HMECT 2n JCHCTBUTENBHBIX

KOpHEM, a /151 OCTaJbHBIX 3HAUEHUH o HUCCIEAYETCS BOIPOC O KOJIMYECTBE 3TUX KOPHEH.



