Physical and Mathematical Sciences

2009, № 1, p. 16–19

Mathematics

ON EULER TYPE EQUATION

S. A. OSIPOVA, L. P. TEPOYAN*

Chair of Differential Equations, YSU

In the present paper an Euler type equation is considered and it is proved that for $\alpha \in [0,1)$ ($\alpha \in (2n-1,2n]$) the characteristic polynomial has 2n real roots.

For other values of α the issue concerning the number of the real roots of this polynomial is investigated.

Keywords: Euler type equation, Hardy's inequality, oscillation problems, characteristic polynomial.

We consider an Euler type equation

$$(-1)^{n} (t^{\alpha} y^{(n)})^{(n)} - \gamma_{n,\alpha} t^{\alpha - 2n} y = 0,$$
 (1)

where
$$t \ge 0$$
, $\alpha \ge 0$, $\alpha \ne 1, 3, ..., 2n - 1$ and $\gamma_{n,\alpha} = 4^{-n} \prod_{i=1}^{n} (2i - 1 - \alpha)^2$.

Note that the numbers $\gamma_{n,\alpha}$ appear naturally, when one uses Hardy's inequality to estimate the scalar product $(t^{\alpha}y^{(n)},y^{(n)})$ (see [1]). In [2] the following statement was proved: the spectrum of the operator generated by the differential expression $t^{2n-\alpha}L:L_{2,\alpha-2n}\to L_{2,\alpha-2n}$, where $Ly\equiv (-1)^n(t^{\alpha}y^{(n)})^{(n)}$

and $L_{2,\alpha-2n} = \left\{ f, \int_0^b t^{\alpha-2n} \left| f(t) \right|^2 dt < \infty \right\}$, is purely continuous and coincides with the ray $\sigma(t^{2n-\alpha}L) = \left[\gamma_{n,\alpha}, +\infty \right)$. The real roots of the characteristic polynomial $p(\lambda) = (-1)^n \prod_{i=0}^{n-1} (\lambda - i)(\lambda - n + \alpha - i) - \gamma_{n,\alpha}$. Of the equation (1) were used in [3] to study the oscillation problems concerning the equation

$$Ly = (-1)^n (t^{\alpha} y^{(n)})^{(n)} - \gamma_{n,\alpha} t^{\alpha - 2n} y = q(t) y.$$

Note that the numbers 0,1,...,n-1 and $2n-1-\alpha,2n-2-\alpha,...,n-\alpha$ are symmetrical with respect to $\frac{2n-1-\alpha}{2}$. After changing the variable

.

E-mail: tepoyan@yahoo.com

$$\mu = \frac{2n - 1 - \alpha}{2} - \lambda \quad \text{the polynomial} \quad p(\lambda) \text{ gets the form}$$

$$\tilde{p}(\mu) = (-1)^n \prod_{i=1}^n \left(\frac{2i - 1 - \alpha}{2} - \mu \right) \left(\frac{-2i + 1 + \alpha}{2} - \mu \right) - \gamma_{n,\alpha} =$$

$$= \frac{(-1)^n}{4^n} \prod_{i=1}^n \left(4\mu^2 - (2i - 1 - \alpha)^2 \right) - \gamma_{n,\alpha}.$$

After changing the variable $x = 4\mu^2$ from the equation $\tilde{p}(\mu) = 0$ we get

$$f(x) = \prod_{i=1}^{n} (x - (2i - 1 - \alpha)^{2}) - (-1)^{n} (1 - \alpha)^{2} (3 - \alpha)^{2} \cdots (2n - 1 - \alpha)^{2} = 0.$$
 (2)

Note that in general case the equation (2) has no n real roots. For example, when n = 3 the equation (2) has the form

$$x(x^{2} - ((1-\alpha)^{2} + (3-\alpha)^{2} + (5-\alpha)^{2})x + (1-\alpha)^{2}(3-\alpha)^{2} + (3-\alpha)^{2}(5-\alpha)^{2} + (1-\alpha)^{2}(5-\alpha)^{2} = 0.$$

It is easy to calculate the discriminant of the quadratic equation:

$$D = -3\alpha^4 + 36\alpha^3 - 114\alpha^2 + 36\alpha + 189 = -3(a+1)(a-7)(a-3)^2,$$

and, therefore, the quadratic equation for any α with large absolute value has two complex roots.

Note also that x=0 for any value of α is a root of (2), and (2) doesn't change its form when one replaces α with $2n-\alpha$. Therefore, it is enough to consider only the case $\alpha \le n$.

Let us now prove that for $\alpha \in [0,1)$ the equation (2) alongside with the root x=0 has also (n-1) positive roots. First we prove this statement for even numbers, i.e. for n=2k. Let

$$g(x) = (x - (1 - \alpha)^2)(x - (3 - \alpha)^2) \cdots (x - (2n - 1 - \alpha)^2)$$

Obviously,

$$f((1-\alpha)^2) = f((3-\alpha)^2) = \dots = f((4k-1-\alpha)^2) = -(1-\alpha)^2 \cdots (4k-1-\alpha)^2 < 0.$$
 (3)

Now by induction we prove that $f((4i)^2) > 0$, i = 1, 2, ..., k. For i = 1 we have

$$f(4^{2}) = \prod_{i=2}^{2k-3} (2i+1-\alpha)^{2} (7-\alpha)^{2} (1-\alpha)(3-\alpha)(4k-3-\alpha)(4k-1-\alpha) \times \times 32k(3-\alpha^{2}+4\alpha k)$$
(4)

and, therefore, $f(4^2) > 0$. Now assuming $f((4i)^2) > 0$, we prove that $f((4(i+1))^2) > 0$. It is enough to prove that $f((4i+4)^2) > f((4i)^2)$, which is

equivalent to the inequality $\frac{g((4i+4)^2)}{g((4i)^2)} > 1$. Further

$$\frac{g((4i+4)^2)}{g((4i)^2)} = \frac{((4i+4)^2 - (1-\alpha)^2)((4i+4)^2 - (3-\alpha)^2)\cdots((4i+4)^2 - (4k-1-\alpha)^2)}{((4i)^2 - (1-\alpha)^2)((4i)^2 - (3-\alpha)^2)\cdots((4i)^2 - (4k-1-\alpha)^2)} = \frac{(4i+3+\alpha)(4i+1+\alpha)}{(4i+3-\alpha)(4i+1-\alpha)} \cdot \frac{(4i+4k+1-\alpha)(4k+4i+3-\alpha)}{(4i-4k+1+\alpha)(4i-4k+3+\alpha)} > 1,$$

since $(4i+3-\alpha)(4i+1-\alpha)>0$ and $(4i-4k+1+\alpha)(4i-4k+3+\alpha)>0$. Thus we obtain that $f((4i)^2)>0$, i=1,2,...,k. Now using inequality (3) and the first Theorem of Bolzano–Cauchy, we conclude that the equation (2) has 2k-1 positive roots alongside with the root x=0. Using the form of the polynomial $\tilde{p}(\mu)$ and changing the variable $\mu=\frac{2n-1-\alpha}{2}-\lambda$, we conclude that the polynomial $p(\lambda)$ has 2n real roots, whereas $\frac{2n-1-\alpha}{2}$ is a double root and the other roots are symmetrical with respect to $\frac{2n-1-\alpha}{2}$. For odd numbers n=2k+1 the proof is similar.

Now consider the case $1 < \alpha \le n$. We'll consider the cases $\alpha \in (4j-1,4j+1)$ and $\alpha \in (4j-3,4j-1)$ separately. Let n=2k and $\alpha \in (4j-3,4j-1)$. We'll show that $f((4i+2)^2) > 0$, i=0,1,...,k-1.

For i = 0 we have

$$f(2^2) = (3-\alpha)^2 (5-\alpha)^2 \cdots (4k-3-\alpha)^2 (\alpha-1)(4k-1-\alpha)((1+\alpha)(4k+1-\alpha) - (\alpha-1)(4k-1-\alpha)),$$

that implies $f(2^2) > 0$. Now we obtain as we did above

$$\frac{g((4i+6)^2)}{g((4i+2)^2)} = \frac{(4i+5+\alpha)(4i+3+\alpha)}{(4i+5-\alpha)(4i+3-\alpha)} \cdot \frac{(4k+4i+3-\alpha)(4k+4i+5-\alpha)}{(4k-4i-3-\alpha)(4k-4i-5-\alpha)} > 1,$$

since for $\alpha \in (4j-3,4j-1)$ the denominators of the both fractions are positive and obviously, both fractions are greater than one.

Note that $(4k-1-\alpha)^2 \in ((4k-4j)^2, (4k-4j+2)^2)$ and taking into consideration the inequalities (3) and $f((4i+2)^2) > 0$, we conclude that (2) has at least n-2j+1 positive roots alongside with the root x=0. Hence the polynomial $p(\lambda)$ has at least 2n-4j+4 real roots. Note that for j=1, i.e. for $\alpha \in (1,3)$, the situation is similar to the case $\alpha \in [0,1)$.

For n = 2k and $\alpha \in (4j-1, 4j+1)$ instead of the points $x = (4i+2)^2$ we take $x = (4i)^2$, i = 1, 2, ..., k. Then we prove that $f((4i)^2) > 0$ and conclude that the equation (2) has at least n - 2j - 1 real roots alongside with the root x = 0. Thus the polynomial $p(\lambda)$ has at least 2n - 4j real roots.

Now we consider the case of odd numbers n = 2k + 1 and $\alpha \in (4j-1, 4j+1)$.

As in the case $\alpha \in [0,1)$, we prove that $f(4^2) < 0$. Note that for i < k - j the inequality

$$\frac{g((4i+4)^2)}{g((4i)^2)} = \frac{(4i+3+\alpha)(4i+1+\alpha)}{(4i+3-\alpha)(4i+1-\alpha)} \cdot \frac{(4i+4k+3-\alpha)(4i+4k+5-\alpha)}{(4i-(4k-1)+\alpha)(4i-(4k+1)+\alpha)} > 1$$

immediately follows from the positiveness of both denominators. For i = k - j the

denominator of the second fraction $(4i-(4k-1)+\alpha)(4i-(4k+1)+\alpha)$ is negative $((4i+3-\alpha)(4i+1-\alpha)>0$ for $\alpha\in(4j-1,4j+1)$ and any i), i.e. by induction in i we prove that $f((4i)^2)<0$, i=1,2,...,k-j. As a result we conclude that the polynomial $p(\lambda)$ for $\alpha\in(4j-1,4j+1)$ has at least 2n-4j-2 real roots. We prove analogously that the polynomial $p(\lambda)$ for $\alpha\in(4j-3,4j-1)$ has at least 2n-4j+2 real roots.

Unfortunately, similar considerations for $\alpha > 2n$ do not lead to the desired result. For instance, for n = 2k we get $f(4^2) < 0$, since in the expression (4) $3 - \alpha^2 + 4\alpha k < 0$.

Received 07.05.2008

REFERENCES

- 1. Hardy G.H., Littlewood J.E., Polya G. Inequalities. Cambridge: Cambridge Univ. Press, 1964.
- Tepoyan L.P. Izvestiya Natsionalnoi Akademii Nauk Armenii. Matematika, 2003, v. 38, № 5, p. 48–56 (in Russian).
- 3. **Dosly O., Fisnarova S.** Electronic Journal of Differential Equations, 2003, № 115, p. 1–21.

Ս. Ա. Օսիպովա, Լ. Պ. Տեփոյան

Էյլերի տիպի մի հավասարման մասին

Դիտարկվում է Էյլերի տիպի մի հավասարման բնութագրիչ բազմանդամը և ցույց է տրվում, որ $\alpha \in [0,1)$ ($\alpha \in (2n-1,2n]$) դեպքում այն ունի 2n իրական արմատներ, իսկ մյուս α -ների համար հետազոտվում է իրական արմատների քանակի հարցը։

С.А. Осипова, Л.П. Тепоян

Об одном уравнении типа Эйлера

В работе рассматривается уравнение типа Эйлера и доказывается, что при $\alpha \in [0,1) \left(\alpha \in (2n-1,2n]\right)$ характеристический полином имеет 2n действительных корней, а для остальных значений α исследуется вопрос о количестве этих корней.