PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2009, Ne 1, p.29-35
Mathematics
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In the present paper the concepts of g-lattice and g-algebra introduced in [1]
and [2] are studied. The relationship between lattices (Boolean algebras) and
g-lattices (g-algebras) is stated, and the results of [2] are improved.
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The concept of g-lattices and g-algebras. Let Q be a quasiorder
(i.e. a reflexive and transitive binary relation) on set A=< . Then
E, =0NQ "' cAxA is an equivalence relation, and Q/E,c A/ EyxAlE, is

a relation defined as <B,C>EQ/EQ for B,CGA/EQ<—><b,c>eQ for each

Vbe B, VceC, whereas B, Ce A/ E,, is an order on 4. For short, we write <,

instead of Q/E,, and denote by [x] the equivalence class of E,=0nN o
containing the element x e 4.

Definition 1. The function K:A4/E,—> A is called a choice-function, if
K(B)e B forany Be A/ E,. The triple (4, O, K) is called an quasiordered set,
if for any two classes B,C € 4/ E,, there exist sup., (B,C) and infSQ (B,C).

Definition 2. Algebra (4, v, A) is called a g-lattice, if for any a,b,c € A the
operations v, A have the following properties:

1. avb=bva and aAb=>bAa (commutativity);

2. av(bvce)= (a v b) ve and an(bac)= (a A b) Ac (associativity);
3. av(bra)=ava and aA(bva)=ana (weak absorption);

4. av(bvb)=avb and an(bArb)=anb (weak idempotence);

5. ava=anAa (equilibrium).

Lemma 1 (see [1]). Let (4, O, K) be a quasiordered set. For each x,ye 4
we put xvy= K(supSQ([x],[y])) and xAy= K(infSQ ([x],[y])) then the algebra
(4, v, A) is a g-lattice.
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Lemma 2 (see [1]). If (A, v, /\) is a g-lattice then the relation
<a,b> €0 avb=bvb is a quasiorder on set 4, the mapping K:A4/E, —> A4

defined by K([a])=ava is a choice-function, and the triple (4,0, K) is a

quasiordered set, where sup., (B,C) and infSQ (B, C) are defined as
sup.,(B,C)=[bvc] and inf_,(B,C)=[bAc].

If the triple (A4, O, K) is a quasiordered set then (A / EQ,supSQ,infSQ) is called an

induced lattice.

Definition 3. A g-lattice (4, v, A) is called distributive, if it satisfies the
distributivity condition av (b Ac)=(avb)A(avc) forany a,b,ce 4.

Lemma 3. In any g-lattice (A4, v, A) the following two properties of
distributivity I. av (bac)=(avb)a(ave) and II. an(bve)=(anb)v(anc)
are equivalent for any a,b,c€ 4.

Proof- Let us prove that II implies L.
(avb)a(ave)=((avb)ra)v((avb)rc)=(ara)v(ca(avb))=(ava)v(cr(avb))=
=av(ca(avb)=av((cra)v(cab)=(av(cra)Vv(cab)y=(ava)v(crb)=av(cAb).

The implication I—-II is proved similarly.

Lemma 4. If avad' =ava" and ana'=ana” in a distributive g-lattice
thena'va' =a"va".

Proof.
dvd=dv(dnra)=dv(a"ra)=(dva")A(dva)=(da'va")A(a"va)=d"A(d'va)=
=d"A(d"va)=d"rd"=d"vd'.

Definition 4. A g-lattice (A, v, A) is called limited, if there are elements 0
and 1 such that 0Aa@=0 and 1v a=1 for any element a € 4.

Definition 5. A g-lattice (A, v, A) is called g-lattice with complements, if
for any a € A there is a’€ 4 such that a’'Aa=0 and a'va=1.

Lemma 5. If a' is a complement of a then a' is a complement for any ele-
ment from the equivalence class containing a , and any element from the equivalence
class containing a’ is complement for @ . In other words, if @’ Aa=0 and a'va=1,
then a'Ab=0and a'vb=1 Vbe[a], b’'ra=0and b'va=1 Vb e[d'].

Proof. Since the elements ¢ and b belong to the same class, if and only if
av a=bvb we obtain
adnb=d A(bab)=d A(arna)=ada ra=0, dvb=d' v(bvb)=dV)ava)=d va=],
bra=b'Abyra=(d rd)yrna=d ra=0,b'va=0b'vb)va=(d'vad)vd =dva=1.

Lemma 6. 1f a'and a" are complements of a thena'va'=a"va".

Proof. ava'=ava"=1and ana'=ana"=0->a'va =da"va".

Definition 6. A distributive, limited g-lattice with complements is called
a g-algebra.

Lemma 7. In any g-algebra (A, v, /\) for any a,b,xe A there hold the
following identities
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1. (avb) vx=a' Ab'vx, 3.(avb) rAx=a Ab Ax, 5.(a) vx=avx,

2. (anb) vx=da'vb'vx, 4 (anb) rAx=davb Ax, 6. (a") Ax=anx.
Proof- Let us prove the first identity
(avbyv(a' ab)=av (@ AbYyvb=(ava)yr(avDb)vb=1A(avD)vb=
=(avb)vb=av((bvb)=avl=]l,
(avbya(@ ab)y=an(@ rbYyvba(@ rb)Y=(@anra)Ab' v (bAD)YAG =
=(0Ab)V(0OAd)=0v0=0,
iie. a'Ab' is a complement for avb, therefore, (avb)'v(avb)lz
=(a'Ab")v(a'AD'), that implies
(avb)'vxz(avb)’v(avb)'vx=(a’/\b')v(a’/\b')vxz(a'/\b’)vx.
Similarly we can prove the identities 2—4.

Let us prove the identity 5. (a')' and a are complements of a', therefore,

(@) v(@) =ava=(d) vx=(d) v(d) vx=avavx=avx.
The identity 6 is proved similarly to 5.
Definition 7. In g-algebra (A4, v, A) a complement a' of an element a is

called Boolean if it is idempotent, i.e. a'va'=a’.
Lemma 8. Every element of g-algebra has a unique Boolean complement.
Proof. Let (A, v, A) be a g-algebra. We prove that if ¢’ is a complement of

acA then the element a' =da'va is its Boolean complement -
ava ' =av(a'va)=ava =1, anra =an(ara)=anra' =0. Since the

element a” =a'va' is idempotent, from Definition 7 we conclude that a* is a
Boolean complement of a. Now we have to show its uniqueness. If both a’ and
a" are Boolean complements of the element a € 4 then a'=da'va'=da"va"=a".

Lemma 9. In any g-algebra (4, v, A) for Boolean complements there hold

De Morgan’s identities: (avb) =a" Ab", (anb) =a* vb and 1" =0, 0" =1,
forevery a,be 4.

Proof. Let us check De Morgan’s identities. Since a* Ab" is a complement
of (a v b)+ and a” Ab" is idempotent, from the definition of Boolean complement

we obtain the first identity. The second identity is proved similarly. And since 1
and 0 are idempotent elements, then 1" =0 and 0" =1.

Lemma 10. If in g-algebra (A, Vv, /\) the mapping ¢:a —>a" is injective or
surjective then (A, v, AT ,0,1) is a Boolean algebra.
Proof. Let the mapping ¢@:ar>a’ be injective. We prove that algebra

(A, Vv, /\,+,0,1) is Boolean. Assume the opposite, i.e. there exists an element

aec A suchthat ava=5b, a+b.In this case
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l=ava =(ava)va =bva"

=>p(a)=p(b)=a=b,
O=ana =(ana)yra =bnra’
so we come to a contradiction.

If mapping @:a—a" is surjective then for any element b e 4 there exists
an element a € A such that p(a)=b ie. a" =b,so bvb=a"va =a " =b= A4
is a Boolean algebra.

Corollary 1. If in g-algebra (4, v, A) the identity (a*)" =a holds for any
element a e 4 then (4, v, A) is a Boolean algebra.

Lemma 11. 1f in g-algebra (4, v, A) any element ae A has only one
complement then (4, v, A) is a Boolean algebra.

Proof. Assume the opposite, i.e. there exists an element a< 4 such that
ava=b, a#b.In this case

l=avad =(ava)va =bvad ,
= a'e A has two complements — @ and b.

’

OzaAa'z(a/\a)/\a’zb/\a

So we come to a contradiction.
Theorem 1. Algebra (4, v, A) is a g-algebra, if and only if (iff) the

induced lattice (A / EQ,supSQ,infSQ) is a Boolean algebra.

To prove the Theorem we first prove that:
o A g-lattice (4, v, A) is distributive, iff the induced lattice

(47 Ey.sup.p.inf.,) is distributive.

e A g-lattice (4, v, A) is limited, iff the induced Ilattice
(47 Egsup.y,inf.,) is limited.

e A g-lattice (A4, v, A) is a g-lattice with complement, iff the induced
lattice (A/ EQ,supSQ,infSQ) is a g-lattice with complement.

The first statement is proved in [1]. Let us prove the second one. Let
(4, v, A) be a limited g-lattice. Denote O=[0] and /=[0]. In this case

sup.,(4,1)=[av1]=[l]=1, inf ,(4,0)=[a A0]=[0]=O for each class 4/E,,
and hence the induced lattice (A/EQ,supSQ,inng) is limited by O=[0] and
I=[1]. Now let the induced lattice (A/E,,sup.p,inf.,) be limited, ie.
(A ! Eg,sup.g,inf,

<0>
hold
0na=K(inf, ([0][a]) = K(inf, (O,[a])) = K(O)=0, 1va=K(sup, ([1],[a])) =

=K(sup (/,[a]) =K (/) =1

and, therefore, the g-lattice (4, v, A) is limited by 0 and 1. Now it remains to

1,0). Denote K(0)=[0], K(/)=[1] then for cach ae 4

prove the third assertion. Let (4, v, A) be a g-lattice with complements. In this
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case the class A'=[a’]eA/EQ (for each ae 4) is a complement of the class
Ae A/ EQ . Indeed,

sup.o(4,4") =supy([al.la']) =[ava]=[1]=1,

inf_,(4,4") =inf_,([al.[a']) =[a Aa']=[0]=O.
Now, let the induced lattice (A/ EQ,supSQ,infSQ) be g-lattice with complements.

In this case every element of the class 4" is a complement for any a € 4, since
ava'=K(sup., ([al[a]) = K(sup., (4,47) =K (1) =1,
ana = K(infSQ ([al,[a']) = K(infSQ (4,4")=K(0)=0.
Example 1. Let us give an example of a non-Boolean three-element
g-algebra. We take the set 4=1{0,1,a} and give the operations v,A," by Tables 1, 2

and 3. The graphs of the g-algebra and the induced Boolean algebra are illustrated
in Fig. 1 and 2, respectively.

Table 1 Table 2 Table 3
Y 1 0 a A 1 0 a
11|11 11100 x |10 |a
ol 101 0oJo]o0]o x 1o ltalo
a 1 1 1 a 0 0 1

1 @ a ¢ la

o0 o {0}
Fig. 1. Fig. 2.

On representation of g-algebras.
Definition 8. The set of binary functions G(A), f:4> —> A4 (A4#0) is
called a set of g-functions, if it satisfies the following four properties for all

f,g.heG:

1. f(x, x)=g(x, x) (uniformity);

2. <x,y> # <u,v> = f(f(x,y),f(u,v)) = f(x,v) (conditional diagonality);

3. (xu)# (rv)= f(g(x0) g (wv) =g (f (xu)./ (yv)) for (x.y)# ()
(conditional commutativity);

4. fzpn->f(xy)=r(x.g(ry)), f#pi—>[f(xy)=r(h(x.x).y),
py # [ # pr, —>f(x,y) =f(h(x,x),g(y,y)) , where pr, (xl,xz) =x,, i=1,2 [3]
(conditional absorption).



34 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 1, p. 29-35.

Let (4, v, A) be a g-algebra. Denote by G(A) the set of all binary

functions over 4 defined as
[b i (=10,
T CED=2N v ) if (x.y) % (1,0).
Note that if " and b" are complements of b then
VYAD =y AB' AD Y=y AB"AD)Y=yAD".

Theorem 2.Let A be a g-algebra. The set of binary functions G(A) is a
set of g-functions, if A is a Boolean algebra.

Proof. If G(A) is a set of g-functions then, due to condition of diagonality,

in the case u=1 f,(f,(1,0), f,(u,0))= £,(1,0)=b holds for any element be 4;
on the other hand,
Sy (£(1,0). £, (1.0)) = £, (. £, (1.0)) = 1, (b.(b Aue) v (B' A 0)) = £, (b.b Aut) =
(b/\b)v(b/\u/\b’)zbv(u/\0)=bv0=bvb.
Therefore, b=bv b for any be 4 and thus 4 is a Boolean algebra. Now, note
that if 4 is a Boolean algebra then f,(1,0)==(1Ab)v(0Ab)=bVvO0=b, so
f,(x,y) is defined as follows: f,(x,y)=(xAb)v (¥ AD').

Let us prove that set of binary function G(A) satisfies the following
conditions:

I flx)=x

2 S xp), fu,v) = f(x,v);

3) f(g(xy)gw,v)=g(f(x,u), f(y,v)),
from which follow the properties 1-4. Thus,

[, x)=(xAb)v(xAb)=xA(bvb)=xnl=x,
Lo (o2, [, v) =((x ALYV (y AL AD)V ((wAD)V (vAD)) A D) =
=(xAb)v(vab)=f,(x,v),
Lo (fe (e, p), fouv) =(((xnc)v(y Ac)) ALYV (((wnc)v (vac)) ac) =
=((xAb)vwAbNAc)v ((yAab)v (vAb)) Ac)= f.(f,(x,9), [, (u,)).
Let G(A) be a set of g-functions. Define operation v, A,’, 0, j as follows:
(f v e)x,p) = f(xg(x ),
(f ~re)x,y)=f(g(x,9),y),
Sy =f (%),
o(x,y)=f(¥,¥), j(x,y)= f(x,%).

Theorem 3. A(G(A)=(G(A),v,A, ,o(x,y),j(x,y)) is a Boolean
algebra.

Corollary 2. The g-algebra A(G)=(G,v,A,",0, ) is isomorphic to the algebra
A(G(A) =(G(A),V, A, fo(x,9), fi(x,9)), if and only if A(G)=(Gv,A,",0,/)
is a Boolean algebra and isomorphism is given as follows

b f,(x,y)=(xAb)Vv (y AD").
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Operations v, A, in algebra A(G(A)) are defined as

(fy v L)) = [, L)) (fy A LX) = [ (L2000, 1 (6 9) = £, (0,%).
Proof. If the g-algebra A(G)=(G,v,A,",0,j) is isomorphic to the algebra

A(G(A) = (G(A)VA L fo(x9), /i(6,p)) then f, (x,3)=(f, v f,)(x,), and
particularly

o0 = v /i)XLO),
Joo1L,0)=bVv0=bVvb, =bvb=>b
Uy v )L = £, £y LO) = £, (L o (LO) = £, (LO) =0y,

forany be 4.

Therefore, A(G)=(Gv,A,",0,j) is a Boolean algebra. Now, if
A(G)=(G,v,A,",0,j) is a Boolean algebra then, due to the Theorem 2, G(4) is a
set of g-functions, since f, (x,y) = (x A O) v (y A 1) =y= f(y,y) = O(x,y) .
Similarly we can prove that f,(x,y)= j(x,y). So, due to the Theorem 3, A(G(A))

is a Boolean algebra. Thus it remains to prove isomorphism of these Boolean
algebras:

v )=(x AV vy abve))=(xab)v(xac)v(yab Ac)=(xab)v

VXA)ABVDEY)YV (Y ACYAD =(x Ab)V (x Ac)AD)V (x Ac)AD YV (Y AC) A

A =(x AD)V(x AD)AC)V (X A)AD YV (Y AC)AD =(x Ab)V (X AC)AD )V

V(A ABY = (X ABYV (X AV (P AN AB = (5, (5 3)) = (fy v )59,
Analogously it is proved that f, .(x,»)=(f, A f.)(x,¥).

Ty, ) =(xADIV (Y AB))=(xAD)V (¥ AD) = f,(1,3) = £ (x,9)..
The last two theorems and the corollary improve the results of [2].

Received 03.07.2008

REFERENCES

1. Chajdal. Acta UPO, 1992, v. 105, Ne 32, p. 6-12.
2. Chajdal. Demonstratio Mathematica, 1994, v. XXVII, Ne 3-4, p. 601-607.
3. Movsisyan Yu.M. Uspekhy Math. Nauk, 1998, v. 53, p. 61-114 (in Russian).



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 1, p. 29-35.

U.U. Qlunpgpuie
g-Ywqupubph b g-hwipwhwohyukph dwuhtt

Uslumnwitipnid hbnwgnunymd &t g-fujupubpp b q-hwipwhwohyubpp:
NMunudbwuhpynd £ thnpudhwpdtp  hmdwywwnwupwbnipmiip . juupubpp
(poigut  hwbpwhwohyutph) b g-Ywdupibph (q-hwbpwhwyhdutph) dhol:
Konynud L bwl [2] hnnpwsh wpnyniupubpn:

A. M. TeBOpPKSAH.
O g-pelueTkax u g-anrebpax.

B HacToseln paboTe M3ydyeHbl NOHATUA g-pelleTKU U g-anrebpbl, BBEAEHHblE B
paboTax [1] n [2]. YcTaHaBAMBaeTCA B3aMMOCBA3b MeXKAY pellueTkamu (bynesbimu an-
rebpammu) n g-pewetkamm (g-anrebpamm), a TakKe yTOUYHAOTCA pe3y/ibTaTbl CTaTbh [2].



