Physical and Mathematical Sciences

2009, № 1, p. 29–35

Mathematics

ON q-LATTICES AND q-ALGEBRAS

A. M. GEVORGYAN*

Chair of Algebra and Geometry, YSU

In the present paper the concepts of q-lattice and q-algebra introduced in [1] and [2] are studied. The relationship between lattices (Boolean algebras) and q-lattices (q-algebras) is stated, and the results of [2] are improved.

Keywords: q-lattices, q-algebras, on representation of q-algebras.

The concept of *q*-lattices and *q*-algebras. Let Q be a quasiorder (i.e. a reflexive and transitive binary relation) on set $A \neq \emptyset$. Then $E_Q = Q \cap Q^{-1} \subset A \times A$ is an equivalence relation, and $Q / E_Q \subset A / E_Q \times A / E_Q$ is a relation defined as $\langle B, C \rangle \in Q / E_Q$ for $B, C \in A / E_Q \leftrightarrow \langle b, c \rangle \in Q$ for each $\forall b \in B, \forall c \in C$, whereas $B, C \in A / E_Q$, is an order on A. For short, we write \leq_Q instead of Q / E_Q , and denote by [x] the equivalence class of $E_Q = Q \cap Q^{-1}$ containing the element $x \in A$.

Definition 1. The function $K: A/E_Q \to A$ is called a choice-function, if $K(B) \in B$ for any $B \in A/E_Q$. The triple (A, Q, K) is called an quasiordered set, if for any two classes $B, C \in A/E_Q$ there exist $\sup_{\leq_Q} (B, C)$ and $\inf_{\leq_Q} (B, C)$.

Definition 2. Algebra (A, \vee, \wedge) is called a *q*-lattice, if for any $a,b,c \in A$ the operations \vee, \wedge have the following properties:

- 1. $a \lor b = b \lor a$ and $a \land b = b \land a$ (commutativity);
- 2. $a \lor (b \lor c) = (a \lor b) \lor c$ and $a \land (b \land c) = (a \land b) \land c$ (associativity);
- 3. $a \lor (b \land a) = a \lor a$ and $a \land (b \lor a) = a \land a$ (weak absorption);
- 4. $a \lor (b \lor b) = a \lor b$ and $a \land (b \land b) = a \land b$ (weak idempotence);
- 5. $a \lor a = a \land a$ (equilibrium).

Lemma 1 (see [1]). Let (A, Q, K) be a quasiordered set. For each $x, y \in A$ we put $x \lor y = K\left(\sup_{\leq Q}([x],[y])\right)$ and $x \land y = K\left(\inf_{\leq Q}([x],[y])\right)$ then the algebra (A, \lor, \land) is a *q*-lattice.

_

E-mail: gev.ann84@mail.ru

Lemma 2 (see [1]). If (A, \vee, \wedge) is a q-lattice then the relation $\langle a,b\rangle \in Q \leftrightarrow a \vee b = b \vee b$ is a quasiorder on set A, the mapping $K: A/E_Q \to A$ defined by $K([a]) = a \vee a$ is a choice-function, and the triple (A, Q, K) is a quasiordered set, where $\sup_{SO}(B,C)$ and $\inf_{SO}(B,C)$ are defined as

$$\sup_{Q \in \mathcal{Q}} (B, C) = [b \vee c]$$
 and $\inf_{Q \in \mathcal{Q}} (B, C) = [b \wedge c]$.

If the triple (A, Q, K) is a quasiordered set then $(A/E_Q, \sup_{\leq Q}, \inf_{\leq Q})$ is called an induced lattice.

Definition 3. A q-lattice (A, \vee, \wedge) is called distributive, if it satisfies the distributivity condition $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ for any $a,b,c \in A$.

Lemma 3. In any *q*-lattice (A, \vee, \wedge) the following two properties of distributivity I. $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ and II. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ are equivalent for any $a,b,c \in A$.

Proof. Let us prove that II implies I.

$$(a \lor b) \land (a \lor c) = ((a \lor b) \land a) \lor ((a \lor b) \land c) = (a \land a) \lor (c \land (a \lor b)) = (a \lor a) \lor (c \land (a \lor b)) =$$

$$= a \lor (c \land (a \lor b)) = a \lor ((c \land a) \lor (c \land b)) = (a \lor (c \land a)) \lor (c \land b) = (a \lor a) \lor (c \land b) = a \lor (c \land b).$$

The implication $I \rightarrow II$ is proved similarly.

Lemma 4. If $a \lor a' = a \lor a''$ and $a \land a' = a \land a''$ in a distributive *q*-lattice then $a' \lor a' = a'' \lor a''$.

Proof.

$$a' \vee a' = a' \vee (a' \wedge a) = a' \vee (a'' \wedge a) = (a' \vee a'') \wedge (a' \vee a) = (a' \vee a'') \wedge (a'' \vee a) = a'' \wedge (a' \vee a) = a'' \wedge (a'' \vee a) = a'' \wedge (a' \vee a) = a' \wedge ($$

Definition 4. A q-lattice (A, \vee, \wedge) is called limited, if there are elements 0 and 1 such that $0 \wedge a = 0$ and $1 \vee a = 1$ for any element $a \in A$.

Definition 5. A q-lattice (A, \vee, \wedge) is called q-lattice with complements, if for any $a \in A$ there is $a' \in A$ such that $a' \wedge a = 0$ and $a' \vee a = 1$.

Lemma 5. If a' is a complement of a then a' is a complement for any element from the equivalence class containing a, and any element from the equivalence class containing a' is complement for a. In other words, if $a' \wedge a = 0$ and $a' \vee a = 1$, then $a' \wedge b = 0$ and $a' \vee b = 1$ $\forall b \in [a]$, $b' \wedge a = 0$ and $b' \vee a = 1$ $\forall b' \in [a']$.

Proof. Since the elements a and b belong to the same class, if and only if $a \lor a = b \lor b$ we obtain

$$a' \wedge b = a' \wedge (b \wedge b) = a' \wedge (a \wedge a) = a' \wedge a = 0, \ a' \vee b = a' \vee (b \vee b) = a' \vee)(a \vee a) = a' \vee a = 1,$$
$$b' \wedge a = (b' \wedge b') \wedge a = (a' \wedge a') \wedge a = a' \wedge a = 0, \ b' \vee a = (b' \vee b') \vee a = (a' \vee a') \vee a' = a' \vee a = 1.$$

Lemma 6. If a' and a'' are complements of a then $a' \lor a' = a'' \lor a''$.

Proof.
$$a \lor a' = a \lor a'' = 1$$
 and $a \land a' = a \land a'' = 0 \rightarrow a' \lor a' = a'' \lor a''$.

Definition 6. A distributive, limited q-lattice with complements is called a q-algebra.

Lemma 7. In any q-algebra (A, \vee, \wedge) for any $a, b, x \in A$ there hold the following identities

1.
$$(a \lor b)' \lor x = a' \land b' \lor x$$
, 3. $(a \lor b)' \land x = a' \land b' \land x$, 5. $(a')' \lor x = a \lor x$,

2. $(a \wedge b)' \vee x = a' \vee b' \vee x$, 4. $(a \wedge b)' \wedge x = a' \vee b' \wedge x$, 6. $(a')' \wedge x = a \wedge x$. *Proof.* Let us prove the first identity

$$(a \lor b) \lor (a' \land b') = a \lor (a' \land b') \lor b = (a \lor a') \land (a \lor b') \lor b = 1 \land (a \lor b') \lor b = (a \lor b') \lor b = a \lor (b \lor b') = a \lor 1 = 1,$$

$$(a \lor b) \land (a' \land b') = a \land (a' \land b') \lor b \land (a' \land b') = (a \land a') \land b' \lor (b \land b') \land a' =$$

= $(0 \land b') \lor (0 \land a') = 0 \lor 0 = 0$,

i.e. $a' \wedge b'$ is a complement for $a \vee b$, therefore, $(a \vee b)' \vee (a \vee b)' = (a' \wedge b') \vee (a' \wedge b')$, that implies

$$(a \lor b)' \lor x = (a \lor b)' \lor (a \lor b)' \lor x = (a' \land b') \lor (a' \land b') \lor x = (a' \land b') \lor x$$
. Similarly we can prove the identities 2–4.

Let us prove the identity 5. (a')' and a are complements of a', therefore,

$$(a')' \lor (a')' = a \lor a \Rightarrow (a')' \lor x = (a')' \lor (a')' \lor x = a \lor a \lor x = a \lor x.$$

The identity 6 is proved similarly to 5.

Definition 7. In q-algebra (A, \vee, \wedge) a complement a' of an element a is called Boolean if it is idempotent, i.e. $a' \vee a' = a'$.

Lemma 8. Every element of q-algebra has a unique Boolean complement.

Proof. Let (A, \vee, \wedge) be a q-algebra. We prove that if a' is a complement of $a \in A$ then the element $a^+ = a' \vee a'$ is its Boolean complement $-a \vee a^+ = a \vee (a' \vee a') = a \vee a' = 1$, $a \wedge a^+ = a \wedge (a' \wedge a') = a \wedge a' = 0$. Since the element $a^+ = a' \vee a'$ is idempotent, from Definition 7 we conclude that a^+ is a Boolean complement of a. Now we have to show its uniqueness. If both a' and a'' are Boolean complements of the element $a \in A$ then $a' = a' \vee a' = a'' \vee a'' = a''$.

Lemma 9. In any q-algebra (A, \vee, \wedge) for Boolean complements there hold De Morgan's identities: $(a \vee b)^+ = a^+ \wedge b^+$, $(a \wedge b)^+ = a^+ \vee b^+$ and $1^+ = 0$, $0^+ = 1$, for every $a, b \in A$.

Proof. Let us check De Morgan's identities. Since $a^+ \wedge b^+$ is a complement of $(a \vee b)^+$ and $a^+ \wedge b^+$ is idempotent, from the definition of Boolean complement we obtain the first identity. The second identity is proved similarly. And since 1 and 0 are idempotent elements, then $1^+ = 0$ and $0^+ = 1$.

Lemma 10. If in q-algebra (A, \vee, \wedge) the mapping $\varphi: a \to a^+$ is injective or surjective then $(A, \vee, \wedge, ^+, 0, 1)$ is a Boolean algebra.

Proof. Let the mapping $\varphi: a \mapsto a^+$ be injective. We prove that algebra $(A, \vee, \wedge, ^+, 0, 1)$ is Boolean. Assume the opposite, i.e. there exists an element $a \in A$ such that $a \vee a = b$, $a \neq b$. In this case

$$\begin{vmatrix} 1 = a \lor a^+ = (a \lor a) \lor a^+ = b \lor a^+ \\ 0 = a \land a^+ = (a \land a) \land a^+ = b \land a^+ \end{vmatrix} \Rightarrow \varphi(a) = \varphi(b) \Rightarrow a = b,$$

so we come to a contradiction.

If mapping $\varphi: a \to a^+$ is surjective then for any element $b \in A$ there exists an element $a \in A$ such that $\varphi(a) = b$ i.e. $a^+ = b$, so $b \lor b = a^+ \lor a^+ = a^+ = b \Rightarrow A$ is a Boolean algebra.

Corollary 1. If in q-algebra (A, \vee, \wedge) the identity $(a^+)^+ = a$ holds for any element $a \in A$ then (A, \vee, \wedge) is a Boolean algebra.

Lemma 11. If in q-algebra (A, \vee, \wedge) any element $a \in A$ has only one complement then (A, \vee, \wedge) is a Boolean algebra.

Proof. Assume the opposite, i.e. there exists an element $a \in A$ such that $a \lor a = b$, $a \ne b$. In this case

$$\begin{vmatrix} 1 = a \lor a' = (a \lor a) \lor a' = b \lor a' \\ 0 = a \land a' = (a \land a) \land a' = b \land a' \end{vmatrix} \Rightarrow a' \in A \text{ has two complements } -a \text{ and } b.$$

So we come to a contradiction.

Theorem 1. Algebra (A, \vee, \wedge) is a q-algebra, if and only if (iff) the induced lattice $(A/E_O, \sup_{\le O}, \inf_{\le O})$ is a Boolean algebra.

To prove the Theorem we first prove that:

- A *q*-lattice (A, \vee, \wedge) is distributive, iff the induced lattice $(A/E_O, \sup_{\le O}, \inf_{\le O})$ is distributive.
- A *q*-lattice (A, \vee, \wedge) is limited, iff the induced lattice $(A/E_0, \sup_{\le 0}, \inf_{\le 0})$ is limited.
- A q-lattice (A, \vee, \wedge) is a q-lattice with complement, iff the induced lattice $\left(A/E_Q, \sup_{\leq Q}, \inf_{\leq Q}\right)$ is a q-lattice with complement.

The first statement is proved in [1]. Let us prove the second one. Let (A,\vee,\wedge) be a limited q-lattice. Denote O=[0] and I=[0]. In this case $\sup_{\leq Q}(A,I)=[a\vee 1]=[1]=I$, $\inf_{\leq Q}(A,O)=[a\wedge 0]=[0]=O$ for each class A/E_Q , and hence the induced lattice $\left(A/E_Q,\sup_{\leq Q},\inf_{\leq Q}\right)$ is limited by O=[0] and I=[1]. Now let the induced lattice $\left(A/E_Q,\sup_{\leq Q},\inf_{\leq Q}\right)$ be limited, i.e. $\left(A/E_Q,\sup_{\leq Q},\inf_{\leq Q},I,O\right)$. Denote K(O)=[0], K(I)=[1] then for each $a\in A$ hold

$$0 \wedge a = K(\inf_{\leq_{Q}} ([0], [a])) = K(\inf_{\leq_{Q}} (O, [a])) = K(O) = 0, \ 1 \vee a = K(\sup_{\leq_{Q}} ([1], [a])) = K(\sup_{\leq_{Q}} (I, [a])) = K(I) = 1$$

and, therefore, the *q*-lattice (A, \vee, \wedge) is limited by 0 and 1. Now it remains to prove the third assertion. Let (A, \vee, \wedge) be a *q*-lattice with complements. In this

case the class $A' = [a'] \in A / E_Q$ (for each $a \in A$) is a complement of the class $A \in A / E_Q$. Indeed,

$$\sup_{\leq Q}(A, A') = \sup_{\leq Q}([a], [a']) = [a \lor a'] = [1] = I,$$

$$\inf_{\leq Q}(A, A') = \inf_{\leq Q}([a], [a']) = [a \land a'] = [0] = O.$$

Now, let the induced lattice $(A/E_Q, \sup_{\leq Q}, \inf_{\leq Q})$ be q-lattice with complements.

In this case every element of the class A' is a complement for any $a \in A$, since

$$a \vee a' = K(\sup_{\leq_{O}} ([a], [a'])) = K(\sup_{\leq_{O}} (A, A')) = K(I) = 1,$$

$$a \wedge a' = K(\inf_{\leq_{O}} ([a], [a'])) = K(\inf_{\leq_{O}} (A, A')) = K(O) = 0.$$

Example 1. Let us give an example of a non-Boolean three-element q-algebra. We take the set $A = \{0,1,a\}$ and give the operations \vee, \wedge ,' by Tables 1, 2 and 3. The graphs of the q-algebra and the induced Boolean algebra are illustrated in Fig. 1 and 2, respectively.

On representation of q-algebras.

Definition 8. The set of binary functions G(A), $f:A^2 \to A$ $(A \neq 0)$ is called a set of g-functions, if it satisfies the following four properties for all $f,g,h \in G$:

- 1. f(x, x) = g(x, x) (uniformity);
- $2.\langle x,y\rangle \neq \langle u,v\rangle \Rightarrow f(f(x,y),f(u,v)) = f(x,v)$ (conditional diagonality);
- 3. $\langle x, u \rangle \neq \langle y, v \rangle \Rightarrow f(g(x, y), g(u, v)) = g(f(x, u), f(y, v))$ for $\langle x, y \rangle \neq \langle u, v \rangle$ (conditional commutativity);
- 4. $f \neq pr_2 \rightarrow f(x,y) = f(x,g(y,y))$, $f \neq pr_1 \rightarrow f(x,y) = f(h(x,x),y)$, $pr_1 \neq f \neq pr_2 \rightarrow f(x,y) = f(h(x,x),g(y,y))$, where $pr_i(x_1,x_2) = x_i$, i=1,2 [3] (conditional absorption).

Let (A, \vee, \wedge) be a *q*-algebra. Denote by G(A) the set of all binary functions over A defined as

$$f_b(x,y) = \begin{cases} b & if \quad \langle x,y \rangle = \langle 1,0 \rangle, \\ (x \wedge b) \vee (y \wedge b') & if \quad \langle x,y \rangle \neq \langle 1,0 \rangle. \end{cases}$$

Note that if b' and b'' are complements of b then

$$y \wedge b' = y \wedge (b' \wedge b') = y \wedge (b'' \wedge b'') = y \wedge b''$$
.

Theorem 2. Let A be a q-algebra. The set of binary functions G(A) is a set of g-functions, if A is a Boolean algebra.

Proof. If G(A) is a set of g-functions then, due to condition of diagonality, in the case $u \ne 1$ $f_b(f_b(1,0), f_b(u,0)) = f_b(1,0) = b$ holds for any element $b \in A$; on the other hand,

$$f_b(f_b(1,0), f_b(u,0)) = f_b(b, f_b(u,0)) = f_b(b, (b \wedge u) \vee (b' \wedge 0)) = f_b(b, b \wedge u) = (b \wedge b) \vee (b \wedge u \wedge b') = b \vee (u \wedge 0) = b \vee 0 = b \vee b.$$

Therefore, $b = b \lor b$ for any $b \in A$ and thus A is a Boolean algebra. Now, note that if A is a Boolean algebra then $f_b(1,0) == (1 \land b) \lor (0 \land b') = b \lor 0 = b$, so $f_b(x,y)$ is defined as follows: $f_b(x,y) = (x \land b) \lor (y \land b')$.

Let us prove that set of binary function G(A) satisfies the following conditions:

- 1') f(x,x) = x;
- 2') f(f(x,y), f(u,v)) = f(x,v);
- 3') f(g(x,y),g(u,v)) = g(f(x,u),f(y,v)),

from which follow the properties 1–4. Thus,

$$f_b(x,x) = (x \wedge b) \vee (x \wedge b') = x \wedge (b \vee b') = x \wedge 1 = x,$$

$$f_b(f_b(x,y), f_b(u,v)) = (((x \land b) \lor (y \land b')) \land b) \lor (((u \land b) \lor (v \land b')) \land b') =$$

$$= (x \land b) \lor (v \land b') = f_b(x,v),$$

$$f_b(f_c(x,y), f_c(u,v)) = (((x \land c) \lor (y \land c')) \land b) \lor (((u \land c) \lor (v \land c')) \land c') =$$

$$= (((x \land b) \lor (u \land b')) \land c) \lor (((y \land b) \lor (v \land b')) \land c') = f_c(f_b(x,y), f_b(u,v)).$$

Let G(A) be a set of g-functions. Define operation \vee , \wedge , o, j as follows:

$$(f \lor g)(x, y) = f(x, g(x, y)),$$

 $(f \land g)(x, y) = f(g(x, y), y),$
 $f'(x, y) = f(y, x),$
 $o(x, y) = f(y, y), j(x, y) = f(x, x).$

Theorem 3. $A(G(A)) = (G(A), \vee, \wedge, ', o(x, y), j(x, y))$ is a Boolean algebra.

Corollary 2. The q-algebra $A(G) = (G, \vee, \wedge, ^+, o, j)$ is isomorphic to the algebra $A(G(A)) = (G(A), \vee, \wedge, ^+, f_0(x, y), f_1(x, y))$, if and only if $A(G) = (G, \vee, \wedge, ^+, o, j)$ is a Boolean algebra and isomorphism is given as follows

$$b \mapsto f_b(x, y) = (x \wedge b) \vee (y \wedge b^+).$$

Operations \vee , \wedge ,' in algebra A(G(A)) are defined as

$$(f_b \lor f_c)(x,y) = f_b(x,f_c(x,y)), \ (f_b \land f_c)(x,y) = f_b(f_c(x,y),y), \ f_b'(x,y) = f_b(y,x).$$

Proof. If the q-algebra $A(G) = (G,\lor,\land,^+,o,j)$ is isomorphic to the algebra $A(G(A)) = (G(A),\lor,\land,^+,f_0(x,y),f_1(x,y))$ then $f_{b\lor c}(x,y) = (f_b \lor f_c)(x,y)$, and

particularly

 $\begin{cases} f_{b\vee 0}(1,0) = (f_b \vee f_0)(1,0), \\ f_{b\vee 0}(1,0) = b \vee 0 = b \vee b, \\ (f_b \vee f_0)(1,0) = f_b(1,f_0(1,0)) = f_b(1,f_0(1,0)) = f_b(1,0) = b, \end{cases} \Rightarrow b \vee b = b$

for any $b \in A$.

Therefore, $A(G) = (G, \vee, \wedge, ^+, o, j)$ is a Boolean algebra. Now, if $A(G) = (G, \vee, \wedge, ^+, o, j)$ is a Boolean algebra then, due to the Theorem 2, G(A) is a set of g-functions, since $f_0(x,y) = (x \wedge 0) \vee (y \wedge 1) = y = f(y,y) = O(x,y)$. Similarly we can prove that $f_1(x,y) = j(x,y)$. So, due to the Theorem 3, A(G(A)) is a Boolean algebra. Thus it remains to prove isomorphism of these Boolean algebras:

$$\begin{split} f_{b\vee c}(x,y) &= (x\wedge(b\vee c))\vee(y\wedge(b\vee c)') = (x\wedge b)\vee(x\wedge c)\vee(y\wedge b'\wedge c') = (x\wedge b)\vee\\ &\vee(x\wedge c)\wedge(b\vee b')\vee(y\wedge c')\wedge b' = (x\wedge b)\vee((x\wedge c)\wedge b)\vee((x\wedge c)\wedge b')\vee(y\wedge c')\wedge\\ &\wedge b' = (x\wedge b)\vee((x\wedge b)\wedge c)\vee((x\wedge c)\wedge b')\vee(y\wedge c')\wedge b' = (x\wedge b)\vee((x\wedge c)\wedge b')\vee\\ &\vee((y\wedge c')\wedge b') = (x\wedge b)\vee((x\wedge c)\vee(y\wedge c'))\wedge b' = f_b(x,f_c(x,y)) = (f_b\vee f_c)(x,y). \end{split}$$
 Analogously it is proved that $f_{b\wedge c}(x,y) = (f_b\wedge f_c)(x,y).$

$$f_{b'}(x,y) = (x \wedge b') \vee (y \wedge (b')') = (x \wedge b') \vee (y \wedge b) = f_b(y,x) = f_b'(x,y)$$
. The last two theorems and the corollary improve the results of [2].

Received 03.07.2008

REFERENCES

- 1. **Chajda I.** Acta UPO, 1992, v. 105, № 32, p. 6–12.
- 2. Chajda I. Demonstratio Mathematica, 1994, v. XXVII, № 3-4, p. 601-607.
- 3. Movsisyan Yu.M. Uspekhy Math. Nauk, 1998, v. 53, p. 61–114 (in Russian).

Ա.Մ. Գևորգյան

q-Կավարների և q-հանրահաշիվների մասին

Աշխատանքում հետազոտվում են գ-կավարները և գ-հանրահաշիվները։ Ուսումնասիրվում է փոխմիարժեք համապատասխանությունը կավարների (բուլյան հանրահաշիվների) և գ-կավարների (գ-հանրահաշիվների) միջև։ Ճշտվում են նաև [2] հոդվածի արդյունքները։

А. М. Геворкян.

О q-решетках и q-алгебрах.

В настоящей работе изучены понятия q-решетки и q-алгебры, введенные в работах [1] и [2]. Устанавливается взаимосвязь между решетками (булевыми алгебрами) и q-решетками (q-алгебрами), а также уточняются результаты статьи [2].