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It is shown, that the transmembrane difference of potentials applied to vesicles
causes the decrease of the swelling time. Vesicle swelling time exponentially
decreases with the increase of the potential. The swelling time of vesicle is greatly
increased with the increase of work for the porous perimeter unit formation.
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Introduction. Osmotic phenomena play an essential role in many cell
processes. For instance, osmosis is directly linked with hormone excretion and
secretion [1, 2]. Proteins eject from the cell limits as a result of swelling and lysis
of chromaffin granules [3]. It should be noted too that serotonin secretion from
human thrombocytes occurs as a result of osmotic lysis of thrombocytes [4].
Despite the fact that osmosis underlies a whole range of physiological processes,
the phenomenon itself has not exhaustively been studied yet, and especially in
presence of transmembrane potential. Works covering the physical mechanism of
cell lysis are still scarce [5-8]. However, it is quite obvious that the lack of a
detailed analysis of such a mechanism hampers understanding of normal and
pathological running regimes of the noted processes. An essential stage of the cell
lysis is its swelling. In a living cell swelling is rather a complex process, so it
makes it reasonable to study the process, using a model system a lipid vesicle.
Wholly, in broader terms the obtained results can be extrapolated to real cell
systems. The work [7] highlights a study of vesicle swelling process, narrowing
however to a case with lacking transmembrane potential difference. As some
transmembrane potential difference is common to the cell membrane, so it poses
the interest to reveal the way such potential difference impacts the lipid vesicle
swelling. It is the issue, which this work focuses on.

Theoretical part. Similarly to [6, 9] let’s consider a vesicle, inside of which
the concentration of osmotically active substance (OAS) c,, is higher than outside
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c,,. - Osmotic pressure is equal to A,

wsm = 0AC, where a = RT is the product of
gas constant and absolute temperature, and Acis the transmembrane potential
difference of OAS concentrations. Under the impact of osmotic pressure the water
pumps into the vesicle. This will lead to expansion of the membrane. As a result, in
the membrane the mechanic pressure AP will be brought about, inducing in turns
in vesicle pressure excessive vs. the outside medium and thus preventing the
osmotic water flow movement into the vesicle. As soon as the AP pressure
reaches the osmotic pressure, the water flow will stop and the membrane will
expand, i.e. the membrane surface area will increase by AS vs. its equilibrium

area S, . As proved by works [6, 9], in the case the extension of the area oversteps a

critical value AS™, quasi-equilibrium pores can originate on the membrane. Such a
fact supports a necessity to consider 2 swelling regimes. Let’s begin with a variant
providing a transmembrane potential difference of OAS concentrations is low, and
osmotic water flow stops moving into the vesicle before elongation reaches the
critical value. In such a case, a temporal change in the volume of the vesicle
resulted from the osmotic water flow penetration into the vesicle, is preassigned by
equation [10]

dAV

TZLpS(O-Aﬂ-osm —AP), (1)
where L, is a membrane permeability factor for water, Sis the vesicle area, o is

a reflection factor. Equation (1) allows to easily determine the relationship between
the change in the volume and the time. Considering that AP =4Y hAS /(R,S,)
(Y"‘ is Young's modulus, / is the membrane thickness, R, is the radius of the
equilibrium vesicle) and expressing a relative change in the area by a relative
change in the volume, one can derive AP =8YhAV /(3RyV;)) . Then substituting the

expanded values Az

osm

and AP into (1) and considering that at the initial moment
AV =0 at o =1, one can derive the vesicle swelling kinetics [6]:

AV =AV, . [1 - exp[—LD , (2
To

R
8L, Yh
defined swelling time. Let's consider a variant providing a transmembrane potential
difference of OAS is high and the excessive volume AV oversteps a critical value

isa

where AV, =7zRjaAc/ (2Y,h) is the maximal excessive volume, 7, =

AV", at which a pore can originate on the membrane. For further analysis let’s
divide a time interval between the start of swelling and the pore origination
moment into 2 stages. The first stage covers swelling up to a moment z,, when the

excessive pressure value is low vs. a critical value AV <AV . The second stage
lasts until prevalence of the excessive volume over the critical one is reached to the
moment of a real pore origination on the membrane. In the case the rupture occurs
prior to a defined vesicle swelling time, then 7, can be determined from the

equation (1) substituting it into a right side of critical value AV":
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T, =-71, ln[l - AAVV J 3)

max

To determine AV~ we use the result of the work [9], which proves that

. 1/3 X
AS 31 7 _Co
Sy 4 YR, 4Y,h

c:co(gs —1},
gm

where y =0 ,h is a linear pore tension coefficient, o, is the energy, needed for

: 4

the cylindrical pore area unit formation, N, is the electrical capacity of the
membrane area unit, & and &, are dielectric permittivity of the solution and the
membrane respectively. Expressing a relative change in the volume by a relative

change in the area, and considering that AV" <AV, we derive the ultimate

max ’

expression from (3) to evaluate 7, as

2 1/3 5
__3 o R __RCo
8L,aAc| Y’ 8Y,hL,aAc

)

7

To determine the average time for the second stage of 7, let’s at first define

the energetic barrier of pore formation. Using the result of the work [9], which
gives calculation of free energy of the elongated vesicle membrane (@), on which
membrane one detects a transmembrane potential difference and a transverse
cylindrical pore of radius ». From equation (4) of the work [9] for major
elongation cases derived can be

2 Y h(AS)*
@ =2rrho, . Ci+2YHh£ +u. (6)
2 S, S,
S . AS
Considering that the membrane elongation is equal to o = 2Y”hS— .
0
Let’s re-write the expression (6) as
2 Y h(AS)?
@ =2zyr — zr? C—(p+0 +”(—), (6a)
2 S,

where o =y . The analysis of (6a) indicates, that the swelling time at the 2nd

stage is equal to the average time, required for overcoming the energetic barrier
equal to the difference between energy values @ in max. point and in point » =0
in the absence of the pore. (6a) allows to easily determine the critical radius of pore
7. and the height of the energetic barrier @, equal to

2
r*zy/[0+céo j, )

2
@:mz/[mcg’ j ®)
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The average time for the second stage of 7, poses the average time the
radius first reaches the critical value pore. Let's consider a random walk of radius r
in radius-dimensional space between its values 0 and 7. The edge 0 is reflective,
and edge # is absorptive. Let's assume the random walk of radius as walk of a
particle between edges 0 and r . Introduce a probability function F(¢,7), of that a
particle in point » at the moment ¢ will reach the edge # for the first time. A

differential equation in partial derivatives that describes a temporal change in
function F(¢,r)is as follows [11]

= = - 9
ot o*r ky;T or or ©

where k; is Boltzmann's constant, 7 is the absolute temperature, D is the

coefficient of pore diffusion in the radius space. Initial and boundary conditions of
equation (9) are as follows
FO,r)=0, 0<r<n ,

Ft,n)=1, (Mj =0. (10)
8r r=0

From (9) equation can be derived for the average time of reaching a critical-size
radius:

— s ——==-1. 11
o*r  k,T or or (1n
Boundary conditions to equation (10) are
7,(r)=0, (Mj =0. (12)
ﬁr r=0

Resolving equation (11) allows deriving the following expression for average time
of the 2nd stage of 7,:

£ = [e(@()) (kBT))U xp(-D () (kBT”””'jdr' "
0 0

Substituting free energy from (6a) into (13) and performing easy calculations
allows derivation of the following approximate expression for average time of the
second stage in form of

KTy (o h)?
no o AT ASpC 2 - (14)
s, 2 s, 2

Results and discussion. As seen from (5), the more the difference of OAS
concentrations, the less 7, (5) also demonstrates that the presence of a trans-

membrane potential difference on the vesicle leads to reduction of 7, The analysis
(14) indicates that the average time of the second stage of 7, decreases in the
presence of a transmembrane difference of potentials on the vesicle. The increase
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in potential on the membrane induces a drastic reduction of time. As seen from
(14), the average time of the second stage of 7, exponentially depends on the work

of formation of a pore perimeter unit o,z =y With the increase in y the average

time of the second stage drastically increases. (14) indicates too that with the
increase in the membrane elongation the average time of the second stage
decreases.

Thus, this work proves that the presence of a transmembrane difference of
potentials on the vesicle simplifies the pore formation process in the membrane.
Sharp changes take place in critical elongation of the membrane, in pressure
differential and critical difference of OAS at which the pore form. As indicated, the
minimal pore radius is independent of a transmembrane potential difference.
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Kunetnka HabyxaHus Be3UKYJ IPH HATMIHHA TPAHCMEMOPaHHOH pa3HOCTH IMOTEHIINATIOB

[TokazaHo, YTO HaIW4YKWE TPaHCMEMOpPAHHOW PA3HOCTH MOTEHIMAIOB Ha BE3HKYJIE
NPUBOJMT K YMEHBIICHHUIO BpeMeHH ee HalOyxanus. C yBeJMYeHHEM INOTEHIHanta BpeMs
HaOyXaHUsl BE3WKYJbl SKCIHOHEHIMAJIbHO yMeHbIIaeTcs. Iloka3zaHO Takke, 4TO BpeMs
HaOyXaHUsl BE3WKYJBl PE3KO YBEIMYMBAETCS C POCTOM paboThl 00pa3oBaHMS E€IUHMIIBI
HepruMeTpa MopéhI.



