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It is shown, that the transmembrane difference of potentials applied to vesicles 

causes the decrease of the swelling time. Vesicle swelling time exponentially 
decreases with the increase of the potential. The swelling time of vesicle is greatly 
increased with the increase of work for the porous perimeter unit formation. 
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Introduction. Osmotic phenomena play an essential role in many cell 

processes. For instance, osmosis is directly linked with hormone excretion and 
secretion [1, 2]. Proteins eject from the cell limits as a result of swelling and lysis 
of chromaffin granules [3]. It should be noted too that serotonin secretion from 
human thrombocytes occurs as a result of osmotic lysis of thrombocytes [4]. 
Despite the fact that osmosis underlies a whole range of physiological processes, 
the phenomenon itself has not exhaustively been studied yet, and especially in 
presence of transmembrane potential. Works covering the physical mechanism of 
cell lysis are still scarce [5–8]. However, it is quite obvious that the lack of a 
detailed analysis of such a mechanism hampers understanding of normal and 
pathological running regimes of the noted processes. An essential stage of the cell 
lysis is its swelling.  In a living cell swelling is rather a complex process, so it 
makes it reasonable to study the process, using a model system a lipid vesicle. 
Wholly, in broader terms the obtained results can be extrapolated to real cell 
systems. The work [7] highlights a study of vesicle swelling process, narrowing 
however to a case with lacking transmembrane potential difference.  As some 
transmembrane potential difference is common to the cell membrane, so it poses 
the interest to reveal the way such potential difference impacts the lipid vesicle 
swelling. It is the issue, which this work focuses on.  

Theoretical part. Similarly to [6, 9] let’s consider a vesicle, inside of which 
the concentration of osmotically active substance (OAS) inc is higher than outside 
                                                 
∗   E-mail:  v.arakelyan@ysu.am 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2009, № 1, p. 49–53. 
 

50 

outc . Osmotic pressure is equal to osm cπ αΔ = Δ , where RTα = is  the product of  
gas constant and absolute temperature, and cΔ is the transmembrane potential 
difference of OAS concentrations. Under the impact of osmotic pressure the water 
pumps into the vesicle. This will lead to expansion of the membrane. As a result, in 
the membrane the mechanic pressure PΔ  will be brought about, inducing in turns 
in vesicle pressure excessive vs. the outside medium and thus preventing the 
osmotic water flow movement into the vesicle. As soon as the PΔ  pressure 
reaches the osmotic pressure, the water flow will stop and the membrane will 
expand, i.e. the membrane surface area will increase by SΔ  vs. its equilibrium 
area 0S . As proved by works [6, 9], in the case the extension of the area oversteps a 

critical value *SΔ ,  quasi-equilibrium pores can originate on the membrane. Such a 
fact supports a necessity to consider 2 swelling regimes. Let’s begin with a variant 
providing a transmembrane potential difference of OAS concentrations is low, and 
osmotic water flow stops moving into the vesicle before elongation reaches the 
critical value. In such a case, a temporal change in the volume of the vesicle 
resulted from the osmotic water flow penetration into the vesicle, is preassigned by 
equation [10] 

                                              ( )p osm
d V L S P

dt
σ πΔ

= Δ − Δ ,                                (1) 

where pL  is  a membrane permeability factor for water, S is the vesicle area, σ  is 
a reflection factor. Equation (1) allows to easily determine the relationship between 
the change  in  the volume  and  the  time.  Considering  that || 0 04 / ( )P h S R SΥΔ = Δ  
( ||Y  is Young's modulus, h  is the membrane thickness, 0R  is the radius of the 
equilibrium vesicle) and expressing a relative change in the area by a relative 
change in the volume, one can derive || 0 08 / (3 )P Y h V R VΔ = Δ . Then substituting the 
expanded values osmπΔ  and PΔ  into (1) and considering that at the initial moment 

0VΔ =  at  1σ = , one can derive  the  vesicle swelling kinetics [6]: 

                                            max
0

1 exp tV V
τ

⎛ ⎞⎛ ⎞
Δ = Δ − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,                           (2) 

where 4
max 0 ||/ (2 )V R c Y hπ αΔ = Δ  is the maximal excessive volume, 

2
0

0
||8 p

R
L Y h

τ =  is a 

defined swelling time. Let's consider a variant providing a transmembrane potential 
difference of OAS is high and the excessive volume VΔ  oversteps a critical value 

*VΔ , at which a pore can originate on the membrane. For further analysis let’s 
divide a time interval between the start of swelling and the pore origination 
moment into 2 stages. The first stage covers swelling up to a moment 1τ , when the 
excessive pressure value is low vs. a critical value *V VΔ < Δ . The second stage 
lasts until prevalence of the excessive volume over the critical one is reached to the 
moment of a real pore origination on the membrane. In the case the rupture occurs 
prior to a defined vesicle swelling time, then 1τ  can be determined from the 
equation (1) substituting it into a right side of critical value  *VΔ : 
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*

1 0
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ln 1 V
V

τ τ
⎛ ⎞Δ

= − −⎜ ⎟Δ⎝ ⎠
.                                         (3) 

To determine *VΔ  we  use the result of the work [9], which proves that 

                                                
1/3* 2

0 || 0 ||

3
4 4

S C
S Y hR Y h

γ ϕ⎛ ⎞Δ
= −⎜ ⎟⎜ ⎟

⎝ ⎠
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                                                      0 1s

m
C C

ε
ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
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where phγ σ=  is a linear pore tension coefficient, pσ  is the energy, needed for 
the cylindrical pore area unit formation, 0Ñ  is the electrical capacity of the 
membrane area unit, sε  and mε  are dielectric permittivity of the solution and the 
membrane respectively. Expressing a relative change in the volume by a relative 
change in the area, and considering that *

maxV VΔ < Δ ,  we derive the   ultimate 
expression from (3) to evaluate 1τ  as   

                                         
1/32 2

0 0
1 2

||||
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8 8

p

p p

R R C
L c Y hL cY

σ ϕ
τ

α α

⎛ ⎞
= −⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠

.                           (5) 

To determine the average time for the second stage of 2τ  let’s at first define 
the energetic barrier of pore formation. Using the result of the work [9], which 
gives calculation of free energy of the elongated vesicle membrane (Ф), on which 
membrane one detects a transmembrane potential difference and a transverse 
cylindrical pore of radius r . From equation (4) of the work [9] for major 
elongation cases derived can be 

                            
22

2

0 0

( )
2 2

2p
Y h SC Srh r Y h

S S
ϕΦ π σ π

Δ⎛ ⎞Δ
= − + +⎜ ⎟

⎝ ⎠
.                     (6) 

Considering that the membrane elongation is equal to 
0

2 SY h
S

σ Δ
= . 

Let’s re-write the expression (6) as    

                                   
22

2

0

( )
2

2
Y h SCr r

S
ΔϕΦ πγ π σ

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
,                           (6a) 

where phσ γ= . The analysis of (6a) indicates, that the swelling time at the 2nd 
stage is equal to the average time, required for overcoming the energetic barrier 
equal to the difference between energy values Φ  in max. point and in point 0r =  
in the absence of the pore. (6a) allows to easily determine the critical radius of pore 

*r  and the height of the energetic barrier *Φ   equal to 

                                                    
2

* /
2
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The average time for the second stage of 2τ  poses the average time the 
radius first reaches the critical value pore. Let's consider a random walk of radius r 
in radius-dimensional space between its values 0 and *r . The edge 0 is reflective, 
and edge *r  is absorptive.  Let's assume the random walk of radius as walk of a 
particle between edges 0 and *r . Introduce a probability function ( , )F t r , of that a 
particle in point r at the moment t will reach the edge *r  for the first time. A 
differential equation in partial derivatives that describes a temporal change in 
function ( , )F t r is as follows [11] 

                                             
2

2
B

F F D FD
t k T r rr

Φ∂ ∂ ∂ ∂
= − ⋅ ⋅

∂ ∂ ∂∂
,                                   (9) 

where Bk  is Boltzmann's constant, T  is the absolute temperature, D  is the 
coefficient of pore diffusion in the radius space. Initial and boundary conditions of 
equation (9) are as follows 

(0, ) 0F r = , *0 r r< <  , 

                                            *( , ) 1F t r = ,    
0

( , ) 0
r

F t r
r =

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
.                               (10)                                          

From (9) equation can be derived for the average time of reaching a critical-size 
radius:  

                                             
2

2 2
2 1

B

DD
k T r rr

τ τΦ∂ ∂∂
− ⋅ ⋅ = −

∂ ∂∂
.                                 (11) 

Boundary conditions to equation (10) are  

                                                 2 *( ) 0rτ = , 
0

( ) 0
r

r
r

τ

=

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
.                                 (12) 

Resolving equation (11) allows deriving the following expression for average time 
of the 2nd stage of 2τ :                                                

                           
*

2
0 0

1 exp( ( ) / ( )) exp( ( ') / ( )) '
r r

B Br k T r k T dr dr
D

τ Φ Φ
⎛ ⎞
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∫ ∫ .         (13) 

Substituting free energy from (6a) into (13) and performing easy calculations 
allows derivation of the following approximate expression for average time of the 
second stage in form of  

             
23/2

2 1/2 22
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( )( ) exp
24 2 22

pB

Bp

hk T
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π σ
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ϕϕπ σ
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.    (14) 

Results and discussion. As seen from (5), the more the difference of OAS 
concentrations, the less 1τ . (5) also demonstrates that the presence of a trans-
membrane potential difference on the vesicle leads to reduction of 1τ .  The analysis 
(14) indicates that the average time of the second stage of 2τ  decreases in the 
presence of a transmembrane difference of potentials on the vesicle. The increase 
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in potential on the membrane induces a drastic reduction of time.  As seen from 
(14), the average time of the second stage of 2τ  exponentially depends on the work 
of formation of a pore perimeter unit phσ γ= .  With the increase in γ  the average 
time of the second stage drastically increases. (14) indicates too that with the 
increase in the membrane elongation the average time of the second stage 
decreases. 

Thus, this work proves that the presence of a transmembrane difference of 
potentials on the vesicle simplifies the pore formation process in the membrane. 
Sharp changes take place in critical elongation of the membrane, in pressure 
differential and critical difference of OAS at which the pore form. As indicated, the 
minimal pore radius is independent of a transmembrane potential difference. 
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Վեզիկուլների ուռչման կինետիկան պոտենցիալների անդրթաղանթային 

տարբերության առկայությամբ 
  
 

Ցույց է տրված, որ վեզիկուլի վրա պոտենցիալների անդրթաղանթային 
տարբերության առկայությունը հանգեցնում է վեզիկուլի ուռչման ժամանակի 
փոքրաց-ման: Պոտենցիալի մեծացմանը զուգընթաց ուռչման ժամանակը 
էքսպոնենտային կերպով նվազում է: Ցույց է տրված նաև, որ վեզիկուլի ուռչման 
ժամանակը կտրուկ մեծանում է միավոր պարագծով ծակոտու առաջացման 
աշխատանքի աճին զուգընթաց: 
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Кинетика набухания везикул при наличии трансмембранной разности потенциалов 

 
Показано, что наличие трансмембранной разности потенциалов на везикуле 

приводит к уменьшению времени ее набухания. С  увеличением потенциала время 
набухания везикулы экспоненциально уменьшается. Показано также, что время 
набухания везикулы резко увеличивается с ростом работы образования единицы 
периметра поры. 
 


