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ON UNIQUENESS OF HOLOMORPHIC AND BOUNDED OUTSIDE THE
CLOSED LOGARITHMIC SECTOR FUNCTIONS REPRESENTABLE BY
LACUNARY POWER SERIES
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In the present note it is shown that for a set of positive integers Aa Miintz-
type condition holds if and only if there exists a lacunary power series

f@=>f / z" that allows an analytic and bounded continuation to the
ved

complement of a closed logarithmical sector with vertex at the origin.
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Let C, be the extended complex plane. Denote by A} the closed

logarithmical sector Aj ={z :|Z| <1,

argz—aln|z| | <P} with aeR,fe [0,71').
The main result of this note is the following

Theorem. Let A be a set of non-negative integers and let
pe [0,71'),0{ € R. Then there exists a non-trivial holomorphic and bounded

function f* in C, \ A% with power series

f(z)=ZL§, |2|>1, (1)
ved Z
if and only if

limsup| D’ l—ﬁlnr <400, )
r>wo | veN\aV T

Note that the particular case o =0 of the Theorem coincides with
Theorem 1 from [1].
The proof of Theorem is based on the representation of holomorphic and

bounded on C,\Aj functions in the form f(z)= §¢(v)/ z", where ¢ is a
function of exponential type in a certain half plane. This well-known technique of
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«coefficient function» was successfully used in theory of analytic continuation (see
[2-4]).

Let 77,={z:Rezzalmz,aeR} be the closed half plane. In polar
coordinates 7,6 the half plane /7, is represented as

11 = z:relg:rZO,He —Z, +£} s
a { [7 > Y >

where y is the root of the equation
gy =—a.7< [_Z,z)
2°2
Lemma 1. If f is holomorphic and bounded in C, \ A%, then there exists a
function ¢ continuous on /7, and holomorphic on its interior such that
pwye ™ =01),  wo o, 3)
and

£(2) = fy+ io“’(v) |2[>1

LV ?
with some constant £, .
Lemma 2. Let ¢ be holomorphic on /7, and such that for some y >1

¢(W)e*ﬂ‘lmw‘ :O(%}’ W — 00,

4
"

Then i &r) defines a bounded analytic function in C, \A%.

v=0 Z

The proof of Lemmas 1, 2 is similar to the proofs of corresponding lemmas
from [1] with some differences.

Proof of the Theorem.

1. Suppose that there is a function f satisfying conditions of the Theorem.

According to Lemma 1 we have
f@=f R B s,
w0 z¥
whereas the function ¢#0 is continuous on /7, , holomorphic on its interior and
satisfies (p(w)e_ﬂ‘lmw‘ =0(1), w— .
From (1) we get ¢ (v), veN,, where N,:=N\A-1. Applying Carleman’s

formula [5] to the function @(ze” +a), Rez>0, where a<(0,1) is such that
o(a)#0, we find

cosy > (v- a)fl < %f(t"z - r_z)ln‘ga(—it e’ +a)p(ite” + a)‘dt +

veN, T
3 |
s | ln‘go(r ) 4 ) ‘cos@d@ +O(), r—> o
nr
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From (3) it easily follows that the first integral is bounded from above by
ﬁcos yInr+O() as r — oo . The second integral is O(1) as r — oo, therefore we
Vd
obtain the estimate

limsu —a)' P
p| > (v-a) Inr <+,
V4

r—ow veNn,
v<r+a

which is equivalent to condition (2).

2. For ¢ € R choose y e (—%,%j such that tgy =—a . Following W.H.J.
Fuchs [6], we consider the function

p(w)=L"H, (we_iy)exp£—2(1 - g)cosy we 7 In(1+we™” )j, well,.
Here In is the principal branch of logarithm, L >0 is a constant and

— ool 2
H,(z)= [] V—Ze.exp(—zcosyj.

VEN\AV-I-ZeW v

It is well-known that under condition (2) and for L small enough, it holds
1

|w+l|2 ’

(p(w)efﬂ‘lmw‘ =0 W—>00.

If f is given by
< (v
f@=320 . [t
v=0

then, due to Lemma 2, f defines a bounded analytic function in C, \ A% Since

@o(v)=0 for ve N\ A, then f has the form (1).
The Theorem is thus proved.
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U. &. Uljpungut

Lnquphpdwulwt ukjnnphg nnipu hnjndnpd, vwhdwbwhwly b julnibwp
wunh&wbuyht owppny ubpluyugynn nruyghwubph Jhwlnipju dwuph

Ushuwnnwiipnid gnyg k wipynid, np npujuts wdpnne pytph puqunipjut hwdwp
Ujmitugh wmbuph wuwydwip wbhpwdton b puwdupup b npybuqh gnnipmit
nbktw (uynibwp wunhfwbwght owpp f(2)=Y. _ f./z", npp pny] L wwihu

twpmwbu npjws thwl nquphpdwfwut ukljunphg pnipu wbwhnhl b
uwhdwiwthwly pupnibwlnipinii:

C. E. Mkprusia

O CANHCTBCHHOCTHU I‘OJ'IOMOp(l)HI)IX 1 OrPAHUYCHHBIX BHC 3dMKHYTOI'O HOFapI/I(i)MI/I‘leCKOI‘O
CCKTOpa q)yHKHHfI, MNpeACTAaBUMBIX JIAKYHAPHBIMU CTCIICHHBIMU PAAaMA

B nacrosiieit paboTe mokaszaHo, 4TO sl MHOXKECTBAa /1 TOJIOKUTENBHBIX IIEIBIX
yucen yclIoBMe THIa MIOHIIA HEOOXOIMMO M JOCTaTOYHO IJIS CYIIECTBOBAHUS JIAKy-
HApHOTO CTEHeHHOro psma f(z)=), . f, /2", KOTOpBIH JONyCKAaeT aHAIUTHYECKOE H

OTpaHUYIECHHOE MTPOIODKEHHE BHE 33/JaHHOTO 3aMKHYTOTO JIOTapU(PMUIECKOTO CEKTOPA.



