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In the present paper the asymptotic variance of the classical Von-Neiman—
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It has been proved in [1], that if a, b, x are elements of the complex Banach
algebra with unit element, whereas [a, b]= ab — ba = 0 and ||exp(ita)|| =0(|t|1/2) ,

1/2
f

Jexp(ith)| = o(| ) , for real 1—> +o0 and [a + ib, x ]=0, then [ @ — ib, x ]=0.

Later in [2] it was shown that in the above mentioned result the condition

o(|z|l/2) can not be replaced by O(|t|m), however here the weakening of the

condition [a,b] =0 plays the central role.
In [3] the class Gr(A4) with weakening condition [a,b]=0 was introduced.

In the present paper we consider the asymptotic cases of these results.
Let A be a Banach algebra with unit element 1 over the field of complex

numbers C (we assume that ||1|| =1 and ||xy|| < ||x||||y|| forall x,y e A4). C— linear
functional, then @ : 4 — C is called a "state", if ||(p|| =p()=1.

The set St(A)of all states forms O'(A*,A) -compact, convex subset of the

dual space 4" . Note that (see [3, 4]) the element he 4 is called “hermitian”, if
p(h)c R for all ¢(h)e St(A4), which is equivalent to the condition ||exp(ith)|| =1
for all real ¢. The set of all hermitian elements H(A) of the algebra A4 is a closed

R -linear subspace of the algebra A. Note that an element ae 4 is called
hermitian-decomposable, if it allows a representation of the form a=h+ik,
where h,k € H(A). Such a representation if exists is unique. The class of all

hermitian-decomposable elements of algebra A is denoted by H(4), and it is
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closed, C -linear subspace of A, which appears to be at the same time a Lie
algebra with respect to commutator.
Let’s choose a local convex topology 7 on algebra A, satisfying the

following properties: the mapping (4,

) = (4,7) is continuous, the multiplication
is separately 7 -continuous. Note that standard topologies in algebras of operators
do have these properties. Remember (see [3]), that an element a € 4 belongs to
class Gr(4), if there exists an element b € A such that
max {Hexp(—ﬂ,b) -exp(2a)|;[exp(~2a)- exp()tb)”} —o(4]

1/2

) for [Al >0, A eC.

b

Theorem [I. Let A be a complex Banach algebra with unit element, on
which the above mentioned local-convex topology 7 is defined. Then for each
neighborhood U < 4 of zero in topology 7, there exists a neighborhood V' 4 of

zero in the same topology 7, such that if xe 4, ||x||£1, aeGr(A), [a,x]eV,
then [b,x]eU.

Proof. Let g be a continuous algebraic semi-norm on {4,7}and &£>0. We
have to point out in the topology 7 a neighborhood V of zero, such that if ||x|| <1
and [a,x]=V, then [b,x]€U . We assume q(x)S”x” and ||a||£1, ||b||£1 for all
xed.

Let ¢ be an arbitrary linear functional on 4, and |¢)(x)| <q(x) forall xe 4.

Let consider the following entire function f, (1) =@(exp(—Ab)-x-exp(db)),

which can be represented as
f,(A)= ¢(exp(—,1b) -exp(Aa) - x - exp(—Aa)- exp(ﬂ,b)) -
—(p(exp(—/lb) (exp(ia) - x—x-exp(Za) )-exp(~7a) exp(/ib)).
Then
XOE ‘(p(exp(—/lb) -exp(Aa) - x - exp(—Aa)- exp(/lb))‘ ;

+ <

¢(exp(—,1b) : (exp(Za) x—x- exp(Za)) -exp(—Aa) exp(}tb))

< g(exp(~2b)-exp(a) - x - exp(~7a)- exp(/lb)) +
+q (exp(—/lb) (exp(Za)-x—x- exp(Za)) - exp(-7a) exp(/lb)) <

1/2
<o) +q(la,xD|2]o(2]"*)e.
Due to the Cauchy integral formula

' 1
S, (0) :EJ.

Vr

f,;(;l) .

where y. 1is a circumference with radius » and with centre in the origin

of coordinates. Since f(;,(O):—(p([b,x]), we have |¢([b,x])|g$r)+
r
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+q([a,x])o(r)e¥ . Since q([b,x]) =sup{|e([b,x])|: ¢ € S}, where
S={ped :|p(x)|< p(x) forall xed}, we get

a3 <2 4 g1, Do(r)e.

r

o(r) < and s<—2_e
roo2 o(\r)
Therefore, if q([a,x]) <o, then ¢([b,x]) <& ,1.e. [b,x]eU .

As a consequence we obtain the following results.

Theorem 2. Let A be a complex Banach algebra with unit element, and

a € Gr(A). Then for every ¢ >0 there exists 0 >0, such that if xe 4 ||x|| <1 and
lla,x]| <&, then [[b,x]|<e.

Proof. The proof follows from Theorem 1, if instead of topology 7 one
takes the topology of the norm on algebra 4.

Corollary 1. Let A be a complex Banach algebra with unit element and
aeGr(A)(NH:(A4). Then for every &>0 there exists ¢ >0, such that if

x| <1 and [[a,x]| <&, then [[a*,x]| <&

Using Theorem 1, we can prove the following result.

Theorem 3. Let 4 be a complex Banach algebra with unit element, on
which the above mentioned local-convex topology 7 is defined. Then for each
neighborhood U — A of zero in the topology 7, there exists a neighborhood

x|<1, aeGr(4) and

Let’s choose for £>0 a radius 7 such that

xeA,

V < A of zero in the same topology 7, such that if xe€ A4,

ax—xbeV ,then bx—xaecU .
As in the proof of Theorem 1, for an arbitrary linear functional ¢ on

A, for which |(p(x)|<q(x) for all xe A, we consider an entire function

F,(A)=¢ (exp(—/lb)x exp(/Ta)) .
Then

F(4)= qo(exp(—/lb) exp(Za) - x-exp(—Ab)exp(Aa)) -
—(p(exp(—/lb) (exp (Za) “X—Xx- exp(Zb)) exp(—zb) exp(/la)) ,

and we get a similar estimation

|, (1)] < o(|4) + |2 o(| 1) g(ax — xb)e™.
Finally we have

g(ax—xb) < olr) +q(ax— xb)o(\/;)ez" ,
r
which proves the Theorem 3.
In the case, when the topology 7 coincides with the topology of the norm on

A, the following statement holds.
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Theorem 4. Let A be a complex Banach algebra with unit element and
a € Gr(A) . Then for every & >0 there exists ¢ >0, such that if xe 4 ||x|| <1 and

||ax — xb" < 0, then ||bx — xa" <e.

Corollary 2. Let A be a complex Banach algebra with unit element and
aeGr(A)NH:(A4). Then for every &>0 there exists >0, such that if

xeAd ||x||£1 and Hax—xcf’”<6, then

a+x—xa” <E.
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Uty nhwnnnnipinit Yndninwunnpiubph wuhdyunnunuwht
hwwnlnipjut yEpupbpyuyg

Syju] wpjuwnwipnid nidtnqugynud £ dntt LEjdwth b $niqiinkh puuwlu

ptoptidh wuhdyunnunughtt muppbpulp Yndybpu pwbwjhgywt hwipwhwoyh
wnwuppbph hwdwp:

OnHo 3amevyanue 00 ACUMIITOTHYECKOM CBOMCTBE KOMMYTaTOPOB

B Hacrosmeil pabore ycuimBaeTcsi aCHUMITOTHYECKHH BapHaHT KJIACCHYECKOW
Teopembl poH Helimana—®Dyrnene 11 31eMEHTOB KOMITICKCHOI 0aHaxOBOit aareOpsl.



