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We consider the linear bounded operator in infinite dimensional separable
Hilbert space satisfying some conditions. We prove formulas that can be used to
calculate the index of this operator.
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Let V' be a linear bounded operator, acting in an infinite dimensional Hilbert
space H, V" is the adjoint operator, ker’ and kerV” are their null-spaces,
dim(ker?) and dim(ker? ") are dimensions of corresponding subspaces. The in-
dex of the operator V' is the number

indV = dim(ker V) —dim(ker V"), (D)
assuming that these dimensions are finite.

Under some conditions on V' we prove some formulas, which can be used to
calculate indV . The conditions on V' and the received formulas for ind}V differ

from the known ones (see [1]).
Lemma. Let [ be the identity operator, and A#0 be some number. Then

ker(V'V)=kerV, ker(VV*')=kerV", )

ker(V'V —A)nkerV ={0}, ker(VV* —Al)nkerV" ={0}, (3)

Viker(V'V —=Al)=ker(VV" = AI), V*(ker(VV" —AD))=ker(V'V — A1), (4)
dim(ker (V*V = Al)) = dim(ker (VV* — A1)). 5)

Proof. If xeker(V'V), then (Vx,Vx)=(V'Vx,x)=0. Therefore, Vx=0. It
follows that x € kerV and ker(V'V)c kerV . From this and from obvious inclu-

sion kerVc ker(V'V) we get the first equality of (2). The second equality
of (2) can be proved in the same way. Let xeker’/ and x#0. Then

VVx—Ax=—Ax#0, i.e. xgker(V'V —Al). This implies the first equality of (3).

* E-mail: khachatryanis@yahoo.com



4 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 3-9.

The second equality of (3) can be proved in the same way. If yeker(V'V —A1),
then for z=Vy we have VV'z—Az=V (V' Vy-Ay)=0, ie. zeker(VV -Al).

Thus, V(ker(V'V —Al))c ker(VV* —AI). Let xeker(VV*—-Al) and yz%V*x.

Then x=Vy and V'Vy-Ay= %V*(VV*x—/lx)zo, ie. yeker(V'V-AI) and

xeV(ker(V'V —Al)). Therefore, ker(VV™ —Al)cV (ker(V'V —Al)). From these
inclusions we obtain the first equality of (4). The second equality in (4) can be
proved by similar reasoning. If xeker(V'V —AI), then (Vx,Vy)=A(x,y) for all
yeH ,and if xeker(VV" —AI), then (V'x,V"y)=A(x,y) . Hence, using (3) and (4)
we obtain that the operator V' transforms any orthogonal non-zero system of ele-

ments from ker(V*V —AI) into an orthogonal non-zero system of elements from

ker(VV* —AI), and V" performs this transformation in reversed order. Conse-
quently, (5) holds.
Theorem. Let for some number c#0 operators A=V'V—cl and

B=VV"—cl be compact. Then ¢>0, and if the number —c is an eigenvalue of the

multiplicity " for 4 and of the multiplicity k" for B (we do not exclude cases
x'=0 or k"=0), then

indV =«"-«". (6)

Moreover, if the space H is separable and one of the operators 4 and B

belongs to the Hilbert—Schmidt class, then the other one also belongs to the same
class, and for their absolute norms N(A4) and N(B) the equality

indV = iz{N2 (A)—N*(B)} (7)
C

holds. If one of the operators A or B belongs to the trace class, then the other one
has the same property, and for their traces sp 4 and sp B the equality

indel{spB—spA}zlsp(B—A)=lSp(VV* =) (8)
C C C

holds.
Proof- The spectrum o(A4) of any compact operator 4 is at most a

countable and bounded set containing zero, and any non-zero element of this set is
an eigenvalue of finite multiplicity. Moreover, if the set o(A) is infinite, then zero
is the only limiting point of o (4). Evidently the spectrum of the operator V'V is

the set o(V'V)={A+c:Aec(A4)}. Thus ceo(V'V). Since V'V is a non-
negative self-adjoint operator, then ¢ > 0, and A is self-adjoint. Similar statements
are true for operators B and VV". Particularly c(VV") = {A1+c: Aec(B)}. From
this and the statement (5) it follows that o(A4)\{—c} =c(B)\{—c}, and if the
number A#—c is an eigenvalue for one of the operators 4 and B, then A is an
eigenvalue of the same multiplicity for the other one (in the case A#0 this
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multiplicity is finite). Let —c be an eigenvalue of multiplicity x' for 4 and of
multiplicity «” for B. These multiplicities evidently are finite and

k' =dim(ker(V'V)), «"=dim(ker(VV")).
From here by (1) and (2) we get (6). Put o=0(4)\{-c,0} = c(B)\{—c,0}. Any
number A€o is an eigenvalue of the same multiplicity x(A) for both operators A4

and B. Let A be a Hilbert—Schmidt class operator, i. e. have finite absolute norm
N(A) (see [2], pp- 96—103, 208-212). Since the operator A4 is self-adjoint, then

(see [2], p. 209)
N> (A)=c’k'+ > A’k(A).

Aleo

Hence the absolute norm N(B) of the operator B is also finite and
N*(B)=c’k"+ > A’k(A).
Aeoc
Thus N?(4)—N?*(B)=c’(x'—«") . From this and relation (6) we get (7).
Let the operator 4 belongs to the trace class (see [2], p. 208-212), i. e.
D A|x(A) < oo.

Lleo

Then the operator B also belongs to the same class. According to the Theorem of
V.B. Lidskii (see [2], p. 212; [3], p. 131; [4]), for spA and spB the following

equalities
spA=—ck'+ D, Ak(A), spB=—ck"+ > Ak(1)

Jeo reo
are true. Hence spB—sp 4 = ¢(x'—«") and by (6) we get (8).

The Theorem is proved.

Consider in the space L’(a,b) with finite or infinite interval (a,b) the
following integral operator K :

b
(Kx)(&)=[K(&mx(mdn, xel’(ab), &e(ab),

where the function K(&,77) satisfies the following condition:

bb
[[I1KEmPEdnds <.

aa

It is known (see [2], p. 101-102), that the operator K belongs to the Hil-
bert—Schmidt class, and its absolute norm N(K) is equal to

N (K)=[[IK(&m[ dndé.

If the operator K is self-adjoint, then K(&,77) = K(n,&) . For the sake of de-

finiteness we consider the case, where the self-adjoint compact operator K has an
infinite set of eigenvalues. Enumerate non-zero eigenvalues 4, (n =1,2,...) in or-

der of decreasing module: |4, | >|4,|> -, repeating each eigenvalue according to
its multiplicity. Denote by ¢, (n =1,2,...) the orthonormal set of corresponding
eigenfunctions: K ¢, =4, ¢, . It is known (see [2], pp. 102, 209), that
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N (K)=Y 4.,
n=1

K(Em=3 2, 0,0, ©)

and the functional series in (10) converges in the space L*((a,b)x (a,b)).
Let the self-adjoint operator K belong to the trace class. Then

DA, <o, spK=>4,.
n=1 n=1
We extend each function xeL’(a,b) onto R=(—w,), putting x(£)=0 for
E¢(a,b). We extend also the function K(&,7) onto R*, putting K(&,7)=0 for
(&,m¢€(a,b)x(a,b). By (9) we have
K(E+6,9)=2 4,0, +00p,(&), (10)
n=1
and the functional series on variables & and ¢ converges in the space L*(R”). In-
deed, this fact follows from the equality

2 2
[ 12 40, E+00,(&)| dtdé=[ [|X 4, 0,m)0,(&)| dndé=
—o0 —o0 [=P —o0 —o0 [N=P
2
=2 X A4 0o 6)ds =X A7,

which is valid for any positive integers p < m.
Besides, for any ¢ the functional series on the variable & in (10) converges

in the space L'(R). Indeed, this follows from the estimate

]3 ?ﬂn ¢n(§+t)¢n(§)‘d65§ ﬁ”ﬂn | T ¢n(§+l)¢n(§)‘dezg

siw{fm,,(csﬂnwfj (len(ff)lzde =S4 [0 Pdz=3 14,1

—00

Define the function K(&,&) by the equality
KED=T 10, an
where the functional series converges in the space L'(R) . Evidently,
?K(ﬁ,«:)dr::izfsplc (12)

Taking into account (10) and (11), we get

['e]

[IK(E+0.8)~K (&, &)ldé= T > 4 0D, (& + D)0, deS

_oo |n=1
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silm,, 19,0, +0) -0, ©)1|dé<

—00
1 1

Mn|ﬁ|¢n<§)|2d§j [TI%(?H)—%(?)IZ%J -

[Ms

<

n=1

1

=314, Iﬁ I(ﬂn(fﬂ)—%(f)lzdé?j :

n=1

But (see [5], p. 499-502)

lim [ | @, (£+0)-@,(£)[ d&=0,

1 1

1
2

(Tm,,(éw)—go,,(éﬂzdf] S(TI%@H)W?] +(T|¢n<§)|2d§J -2,
Hence
lim [ | K(& +1.8)~ K(£.6) |d&=0.

Thus, for any finite or infinite interval («, f) the equality

B hp
[K(&.ds=tlime [ [K(E +0)dsds (13)
a 0a
holds. Particularly
) 1 hb
spK:IIgréZ_([_lK(é+t,§)d§dt. (14)

It is evident, that if the function K(&,7) is continuous in the domain
(a,b)x(a,b), then the function K(&,&), defined in the usual sense, satisfies the
equality (13) for any finite interval (e, f). Thus, for the function K(&,&) the
equality (12) is also true, as

. 1k R R
spK—Ilgl(l)Z { L K(E+t.8)dédi= lim }51; [}}B&; { i K(& +t,§)d§dr}

It is clear that above assertions remain true also for the case, where the set of
eigenvalues of K is finite.
Remark. In the case of a finite segment [a,b] and continuous in the square

[a,b]x[a,b] function K(&,7n) equality (12) is proved also in [3], p. 144-152. The
proof uses Steklov smoothing operator S, (h > 0), defined by the formula

t+h

(S, (O =— [ x(&)dé.
2h
t—h

But in [3] the following assertion is used also: if a function x(¢) is continuous on
[a,b] and equal to zero outside of [a,b], then (S, x)(¢) converges to x(t)
uniformly on [a,b] when 42— 0. This assertion, in general, is erroneous, since

lim (5, )@= (@), lim (S, x)(6)= x(b)
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Corollary. Let H=I"(a,b) with finite or infinite interval (a,b), and for
some number c¢>0 the operators A=V"V —cl and B =VV" —cl are integral

operators, defined for xeL*(a,b) by
b b
(Ax)(&)=[ A& mx(mdn, (Bx)NE)=[BE&n)x(mdn, &e(ab),
where the functions A(&,77) and B(&,7) satisty the following conditions:
bb bb
[Jlag.mPdndé<eo, [[IB&n)dnds <.
Then
. 125 2 2
1ndV=c—2H{| A, mI —[B(Em [ tdndS.
Besides, if operators 4 and B belong to the trace class, then
b
inde}qinéhi”{B(g +1,E) - A(E+t,E)YdE dt
—vne 0a

(we suppose that A(&,n7) and B(&,7n7) are equal to zero outside of (a,b)x(a,b)),
and if the functions A(&,n7) and B(&,n) are continuous in (a,b) x (a,b) , then

b
indV=%I{B(§,§)—A(e”,f)}df- (15)

As an example of a bounded linear operator ¥ in L*(0,c0), for which
A=VV —I and B =VV" -1 are integral operators, we can take the operator,
defined for xeI*(0,0) by

1 &% ;
V)& =—= 2. [x()) S, (™" dn, £ e(0,%), (16)
N27w kZ:(:)'([ *
where m>1 is an integer, i is the imaginary unit,
a)kzexp[ﬂj, k=0,1,---,m,
m

the functions S,(77) are continuous and bounded on (0,0) with S, (7)=1,
| Sy (77) |=1, the function S (77) has continuous and integrable on (0,0) derivative
S’0(n7), and the limits S,(0) and S,(0) of S,(7) at 7—>0 and 77— are real
numbers.

The adjoint operator V" is defined by the formula

7 &= 3 5, e " dy.
27 k=0 0
It is easy to see that
(Ax)E)=[ A&m)x(mdn, (BxNE)=]B(&mx(n)dn,
0 0

where



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 3—-9. 9

$,(&)S; -(77)
A 3 2
27i =0 a)ké: W, 77
B(faﬂ)_mﬂ (D) e g — IS’ ()e" di) +
0
m—1 % . - ) _
r [ 186" = 45, (e oy dr +
k=1 0
m—1% —_— —_ . —
+— 3 (15,050 + 505,00 e+
27 = 0
m—1 ®
+L .[S (I)S (l‘)elt(wé wdl) dt.
27Z'kj 10

Under some additional restrictions on the functions S, , the equality (15) can
be proved and reduced to the form

ndy =t (S0 e Loy
indV = 75y 4 (i) =50,

In the case of m=1 at least one of the operators V' and V" has inverse, even

if the function S|, is only measurable and bounded (see [6]).

Operator of the form (16) arises in the investigations of the scattering inverse
problem for differential operator of order 2m , and the equality (15) expresses a
relation between scattering data (see [7-9]).
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QSuyhtt vwhdwbwithwl oytpwwnnph hugtpuh hwdwp npny puwbwdltph dwuht

Ulgkpe swthwph ubwwpupbk] hhjpbpnyut mmwupwdnipmiinid  qnpénn  gduyht
uwhdwbwhwly oytpwwnnph huntpuh hwdwp wpnwsynid b puwwdlitp, npnup Jupnn u
oquuuugnpdyby huntpup hwoybint hwdwp:

O HekoTOpBIX GOpMyJax Ui MHAEKCA JMHEHHOr0 OrPaHUYEHHOTO ollepaTopa
BriBogsarcs Gpopmysibl Ui HHIIEKCA JSHCTBYIOMIETO B OECKOHEUHOMEPHOM cerapa-

OeapHOM FI/IJ'H:66pTOBOM IIPOCTPAaHCTBEC JIMHEHHOTO OrpaHUYCHHOI'O OIIepaTopa,
KOTOPBIE MOT'YT OBITh UCITOJIH30BAHBI JJIA BBIYHUCJIICHUA HHIACKCA.



