Physical and Mathematical Sciences 2009, № 3, p. 37–41

Mathematics

ON {2,3} -HYPERIDENTITIES IN INVERTIBLE {2,3} -ALGEBRAS WITH A BINARY GROUP OPERATION

H. E. GHUMASHYAN[∗]

Chair of Algebra and Geometry, YSU

In the present paper the invertible $\{2,3\}$ -algebras with a binary group operation and with balanced first sort $\{2,3\}$ -hyperidentities having length 4 are characterized.

*Keywords***:** quasigroup, ternary quasigroup, hyperidentity, invertible algebra.

Introduction. Let *Q* be a nonempty set and *n* be a nonnegative integer. We define Q^n as the direct power of set Q , i.e. Q^n is the set of *n*-tuples of elements from Q. The mapping $A: Q^n \to Q$ is called *n*-ary operation on the set Q , and the number n is the arity of the operation A . The pair $Q(A)$, where *A* is a *n*-ary operation, is called *n*-quasigroup or *n*-ary quasigroup [1, 2], if any set of *n* elements out of $x_1, x_2, ..., x_n, x_{n+1}$ uniquely defines the *n*+1-st one in the equality $A(x_1, x_2, ..., x_n) = x_{n+1}$. In other words, $Q(A)$ is a *n*-quasigroup, if the equation $A(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n) = b$ has a unique solution for any $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$, $b \in Q$ and for any $i = 1, 2, \ldots, n$. In this case the operation *A* is called a quasigroup operation. For $n=1$ the operation *A* is a bijection, and for $n = 2$ the *n*-quasigroup $O(A)$ is called a binary quasigroup or simply a quasigroup, and for $n = 3$ the *n*-quasigroup $Q(A)$ is called a ternary quasigroup.

Let *A* be a quasigroup operation of arity *n*, and let $A(x_1, ..., x_n) = y$. If we replace the elements $x_{k_1}, x_{k_2},..., x_{k_m}$ by fixed elements $a_1, a_2,..., a_m \in Q$, respecttively, then $A(x_1, ..., x_n)$ takes the form $A(x_1, ..., x_{k-1}, a_1, x_{k+1}, ..., x_{k-1}, a_2, ...)$, and we come to the new operation $B(x_1, ..., x_{k-1}, x_{k+1}, ..., x_{k-1}, ..., x_n)$ of arity $n-m$. Obviously, *B* is a quasigroup operation, which is called the retract of *A*.

 \overline{a}

[∗] E-mail: hgumashyan@yahoo.com

The following second order formula [3] is called a hyperidentity [4, 5]: $\forall x_1, ..., x_k \forall X_1, ..., X_m (W_1 = W_2),$

where X_1, \ldots, X_m are functional variables, and x_1, \ldots, x_k are subject variables in words (terms) W_1 , W_2 . The number m is called a rank of a hyperidentity. Usually a hyperidentity is specified without universal quantifier prefix: $W_1 = W_2$. If a rank $m > 1$, the hyperidentity is called nontrivial, and if arities are $|X_1| = n_1, \ldots, |X_m| = n_m$, the hyperidentity $W_1 = W_2$ is called an $\{n_1, \ldots, n_m\}$ -hyperidentity. The satisfiability of a hyperidentity is defined in accordance with its quantifier prefix.

A hyperidentity is called *balanced*, if each subject variable of the hyperidentity occurs in the both parts of the latter one, whereas only once. A balanced hyperidentity is called a *first sort* hyperidentity, if the subject variables in the left and right parts of the equality are ordered identically. The number of subject variables in a balanced hyperidentity is called the *length* of this hyperidentity. The classification of associative hyperidentities and the criteria of their satisfiability in *q*- and *e*-algebras are given in [4–6]. For solutions of analogical problems for ternary associativity hyperidentities in invertible algebras see in [4] (also see [2]).

In the present paper the criteria of satisfiability of first sort balanced $\{2,3\}$. hyperidentities of length 4 in invertible $\{2,3\}$ -algebras with binary group operation are investigated.

§ 1. Preliminary Results. We call the algebra $Q(\Sigma)$ with binary and ternary operations a $\{2,3\}$ *-algebra*. The $\{2,3\}$ -algebra is *nontrivial*, if the sets of its binary and ternary operations are not one-element. The algebra $O(\Sigma)$ is called *invertible*, if $O(A)$ is a quasigroup (for some arity) for any operation $A \in \Sigma$.

Theorem 1 [7].

1. If the $\{2,3\}$ -hyperidentity, given by the equality

$$
((x, y, z), u) = (x, (y, z, u)),
$$

is satisfied in an invertible nontrivial $\{2,3\}$ -algebra, then every functional variable is repeated in it at least twice. Hence, such hyperidentity has the unique form:

$$
X(Y(x, y, z), u) = X(x, Y(y, z, u)).
$$
\n(1)

2. If the $\{2,3\}$ -hyperidentity, given by the equality

$$
((x, y), u, v) = (x, (y, u), v),
$$

is satisfied in an invertible nontrivial $\{2,3\}$ -algebra, then every functional variable is repeated in it at least twice. Hence, such hyperidentity has the unique form:

$$
Y(X(x, y), u, v) = Y(x, X(y, u), v).
$$
 (2)

3. If the $\{2,3\}$ -hyperidentity, given by the equality

$$
((x, y), u, v) = (x, y, (u, v)),
$$

is satisfied in an invertible nontrivial $\{2,3\}$ -algebra, then every functional variable is repeated in it at least twice. Hence, such hyperidentity has the unique form: $Y(X(x, y), u, v) = Y(x, y, X(u, v)).$ (3) 4. If the $\{2,3\}$ -hyperidentity, given by the equality

$$
((x, y, z), u) = ((x, y), z, u),
$$

is satisfied in an invertible nontrivial $\{2,3\}$ -algebra, then every functional variable is repeated in it at least twice. Hence, such hyperidentity has the unique form:

$$
X(Y(x, y, z), u) = Y(X(x, y), z, u). \tag{4}
$$

5. If the $\{2,3\}$ -hyperidentity, given by the equality

$$
((x, y, z), u) = (x, (y, z), u),
$$

is satisfied in an invertible nontrivial $\{2,3\}$ -algebra, then every functional variable is repeated in it at least twice. Hence, such hyperidentity has the unique form:

$$
X(Y(x, y, z), u) = Y(x, X(y, z), u).
$$
 (5)

6. If the $\{2,3\}$ -hyperidentity, given by the equality

$$
((x, y, z), u) = (x, y, (z, u)),
$$

is satisfied in an invertible nontrivial $\{2,3\}$ -algebra, then every functional variable is repeated in it at least twice. Hence, such hyperidentity has the unique form:

$$
X(Y(x, y, z), u) = Y(x, y, X(z, u)).
$$
 (6)

§ 2. Satisfiability Criterion for Hyperidentities (1)–(6).

Theorem 2.1. Suppose that an invertible $\{2,3\}$ -algebra $O(\Sigma)$ has a binary operation $\left(\cdot \right) \in \mathcal{Z}$, such that $Q(\cdot)$ is a group. Then the hyperidentity (1) is satisfied in the algebra $Q(\Sigma)$, iff each ternary operation $A_i \in \Sigma$ is defined by the rule $A_i(x, y, z) = x \cdot y \cdot z \cdot t_i$, where $t_i \in Z(Q)$ (which is the center of the group $Q(·)$), and each binary operation $B_i \in \Sigma$ is defined by the rule $B_i(x, y) = \alpha_i(x \cdot y)$, where $\alpha_i : Q \rightarrow Q$ is a bijection.

Proof: The proof of sufficiency is established by direct checking:

 $\alpha_i (x \cdot y \cdot z \cdot t_i \cdot u) = \alpha_i (x \cdot y \cdot z \cdot u \cdot t_i).$

Let's prove its necessity.

Let the hyperidentity (1) be satisfied in the given algebra $Q(\Sigma)$. If we substitute $X = (\cdot)$, $Y = A_i$ in (1), then we get $A_i(x, y, z) \cdot u = x \cdot A_i(y, z, u)$.

If here $u = e$, which is the unit of the group $Q(\cdot)$, then

 $A_i(x, y, z) = x \cdot A_i(y, z, e) = x \cdot \lambda_i(y, z)$,

where λ_i is a quasigroup operation, and $\lambda_i(y, z) = A_i(y, z, e)$.

Coming back to the equality (1), we get $x \cdot \lambda_i(y, z) \cdot u = x \cdot y \cdot \lambda_i(z, u)$, whence we get $\lambda_i(y, z) \cdot u = y \cdot \lambda_i(z, u)$, and at $u = e$ we have $\lambda_i(y, z) = y \cdot \lambda_i(z, e) = y \cdot \mu_i(z)$, where $\mu_i : Q \rightarrow Q$ is a bijection, i.e.

$$
A_i(x, y, z) = x \cdot \lambda_i(y, z) = x \cdot y \cdot \mu_i(z).
$$

Again, taking into account (1), we get $x \cdot y \cdot \mu_i(z) \cdot u = x \cdot y \cdot z \cdot \mu_i(u)$, $\mu_i(z) \cdot u = z \cdot \mu_i(u)$, and at $u = e$ we have $\mu_i(z) = z \cdot \mu_i(e) = z \cdot t_i$, where $t_i = \mu_i(e) \in Q$, i.e. $A_i(x, y, z) = x \cdot y \cdot z \cdot t_i$. Now, taking into account the previous equality, we get $z \cdot t_i \cdot u = z \cdot u \cdot t_i$, i.e. $t_i \in Z(Q)$ is the center of the group $Q(\cdot)$. Thus, each ternary operation $A_i \in \Sigma$ has the following form: $A_i(x, y, z) = x \cdot y \cdot z \cdot t_i$, where $t_i \in Z(Q)$.

Further, if B_j is any binary operation from Σ , and we substitute $X = B_i$, $Y = A_i$ in (1), then we get $B_i(x \cdot y \cdot z \cdot t_i, u) = B_i(x, y \cdot z \cdot u \cdot t_i)$, and at $x = e$, $z = t_i^{-1}$, we have $B_i(y, u) = B_i(e, y \cdot t_i^{-1} \cdot u \cdot t_i) = B_i(e, y \cdot u) = \alpha_i(y \cdot u)$, where $\alpha_j: Q \to Q$ is a bijection, and $\alpha_j(x) = B_j(e, x)$.

Theorem 2.2. Suppose an invertible $\{2,3\}$ -algebra $O(\Sigma)$ has the binary operation (\cdot) $\in \Sigma$, such that $Q(\cdot)$ is a group. Then the hyperidentity (2) is satisfied in the algebra $Q(\Sigma)$, iff each ternary operation $A_i \in \Sigma$ is defined by the rule $A_i(x, y, z) = \lambda_i(x \cdot y, z)$, where $\lambda_i : Q^2 \to Q$ is a quasigroup operation and each binary operation $B_i \in \Sigma$ is defined by the rule $B_i(x, y) = x \cdot y \cdot t_i$, where $t_i \in Z(Q)$ (the center of the group $Q(·)$).

Proof: The proof of sufficiency is established by direct checking:

 λ_i $(x \cdot y \cdot t_i \cdot u, v) = \lambda_i$ $(x \cdot y \cdot u \cdot t_i, v)$.

Now let's prove its necessity.

Let the hyperidentity (2) be satisfied in the given algebra $O(\Sigma)$. If we substitute $X = (\cdot)$, $Y = A_i$ in (2), then we have $A_i(x \cdot y, u, v) = A_i(x, y \cdot u, v)$.

If $x = e$, then $A_i(y, u, v) = A_i(e, y \cdot u, v) = \lambda_i(y \cdot u, v)$, where λ_i is a quasigroup operation, and $\lambda_i(x, y) = A_i(e, x, y)$. Hence, from (2) at $X = B_i$, $Y = A_i$ we get $\lambda_i (B_i (x, y) \cdot u, v) = \lambda_i (x \cdot B_i (y, u), v)$, whence after reduction by *v* we have $B_i(x, y) \cdot u = x \cdot B_i(y, u)$, and at $u = e$ we get

$$
B_j(x, y) = x \cdot B_j(y, e) = x \cdot \mu_j(y),
$$

where $\mu_i(y) = B_i(y, e)$ and $x \cdot \mu_i(y) \cdot u = x \cdot y \cdot \mu_i(u)$, i.e. $\mu_i(y) \cdot u = y \cdot \mu_i(u)$, and at $u = e$ we get $\mu_i(y) = y \cdot \mu_i(e) = y \cdot t_i$, $t_i = \mu_i(e) \in Q$. Therefore, $y \cdot t_i \cdot u = y \cdot u \cdot t_i$, i.e. $t_i \in Z(Q)$.

Theorem 2.3. Suppose an invertible $\{2,3\}$ -algebra $O(\Sigma)$ has the binary operation (\cdot) $\in \Sigma$, such that $Q(\cdot)$ is a group. Then the hyperidentity (3) is satisfied in the algebra $Q(\Sigma)$, iff each ternary operation $A_i \in \Sigma$ is defined by the rule $A_i(x, y, z) = \mu_i(x \cdot y \cdot z)$, where $\mu_i : Q \to Q$ is a bijection, and each binary operation $B_i \in \Sigma$ is defined by the rule $B_i(x, y) = x \cdot y \cdot t_i$, where $t_i \in Z(Q)$ (which is the center of the group $Q(·)$).

Proof: The proof of sufficiency is established by direct checking:

 $\mu_i (x \cdot y \cdot t_i \cdot u \cdot v) = \mu_i (x \cdot y \cdot u \cdot v \cdot t_i).$

Let's prove its necessity.

Let the hyperidentity (3) be satisfied in the given algebra $Q(\Sigma)$. If we substitute $X = (\cdot)$, $Y = A_i$ in (3), then we get $A_i(x \cdot y, u, v) = A_i(x, y, u \cdot v)$, whence at $x = e$ we have $A_i(y, u, v) = A_i(e, y, u \cdot v) = \lambda_i(y, u \cdot v)$, where λ_i is a quasigroup

operation, and $\lambda_i(x, y) = A_i(e, x, y)$. Hence, $\lambda_i(x \cdot y, u \cdot v) = \lambda_i(x, y \cdot u \cdot v)$, and at $x = e = u$ we get $\lambda_i(y, y) = \lambda_i(e, y \cdot y) = \mu_i(y \cdot y)$, where μ_i is a bijection, and $\mu_i(x) = \lambda_i(e, x)$. Thus, $A_i(x, y, z) = \lambda_i(x, y \cdot z) = \mu_i(x \cdot y \cdot z)$.

Again, from (3) at $X = B_i$ and $Y = A_i$ we get

 $\mu_i (B_i(x, y) \cdot u \cdot v) = \mu_i (x \cdot y \cdot B_i(u, v))$.

Therefore, $B_i(x, y) \cdot u \cdot v = x \cdot y \cdot B_i(u, v)$, and at $u = v = e$ we have

 $B_i(x, y) = x \cdot y \cdot B_i(e, e) = x \cdot y \cdot t_i$, and $x \cdot y \cdot t_i \cdot u \cdot v = x \cdot y \cdot u \cdot v \cdot t_i$, i.e. $t_i \in Z(Q)$. \Box The following results have similar proofs.

Theorem 2.4. Suppose an invertible $\{2,3\}$ -algebra $Q(\Sigma)$ has the binary operation $\left(\cdot \right) \in \mathcal{Z}$, such that $Q(\cdot)$ is a group. Then the hyperidentity (4) is satisfied in algebra $Q(\Sigma)$, iff each ternary operation $A_i \in \Sigma$ is defined by the rule

$$
A_i(x, y, z) = t_i \cdot x \cdot y \cdot z, \quad t_i \in Q,
$$

and each binary operation $B_j \in \Sigma$ is defined by the rule $B_j(x, y) = s_j \cdot x \cdot y$, $s_i \in Q$, where $s_i \cdot t_i = t_i \cdot s_i$.

Theorem 2.5. Suppose an invertible $\{2,3\}$ -algebra $Q(\Sigma)$ has the binary operation $\left(\cdot \right) \in \Sigma$, such that $Q(\cdot)$ is a group. Then the hyperidentity (5) is satisfied in the algebra $O(\Sigma)$, iff each ternary operation $A_i \in \Sigma$ is defined by the rule $A_i(x, y, z) = \theta_i(x) \cdot y \cdot z$, where $\theta_i : Q \to Q$ is a bijection, and each binary operation $B_i \in \Sigma$ is defined by the rule $B_i(x, y) = x \cdot y \cdot \ell_i$, where $\ell_i \in Z(Q)$ (which is the center of the group $Q(·)$).

Theorem 2.6. Suppose an invertible $\{2,3\}$ -algebra $Q(\Sigma)$ has the binary operation $(\cdot) \in \Sigma$, such that $O(\cdot)$ is a group. Then the hyperidentity (6) is satisfied in the algebra $Q(\Sigma)$, iff each ternary operation $A_i \in \Sigma$ is defined by the rule $A_i(x, y, z) = \mu_i(x, y) \cdot u$, here $\mu_i : Q^2 \rightarrow Q$ is a quasigroup operation and each binary operation $B_i \in \Sigma$ is defined by the rule $B_i(x, y) = x \cdot \varphi_i(y)$, where φ_i : $Q \rightarrow Q$ is a bijection.

Received 04.03.2009

REFERENCES

- 1. **Belousov V.D.** *n*-ary Quasigroups. Kishinev: Shtiintsa, 1972 (in Russian).
- 2. **Usan J.** *n*-groups in the Light of the Neutral Operations. Electronic version, 2006.
- 3. **Maltsev A.I.** Algebraic Systems. M.: Nauka, 1970 (in Russian).
- 4. **Movsisyan Yu.M.** Introduction to the Theory of Algebras with Hyperidentities. Yerevan: YSU Press, 1986 (in Russian).
- 5. **Movsisyan Yu.M.** Hyperidentities and Hypervarieties in Algebras. Yerevan: YSU Press, 1990 (in Russian).
- 6. **Movsisyan Yu.M.** Russian Math. Surv., 1998, v. 53, № 1, p. 57–108.
- 7. **Ghumashyan H.E.** Uch. Zapiski EGU, 2008, № 1, p. 141–142 (in Russian).

Երկտեղ խմբային գործողությամբ {2, 3}-հանրահաշիվներում {2, 3}-գերնույնությունների մասին

Աշխատանքում բնութագրվում են երկտեղ խմբային գործողությամբ այն {2, 3}-հանրահաշիվները, որոնք բավարարում են 4 երկարությամբ առաջին սեռի հավասարակշռված {2, 3}-գերնույնություններին:

О {2, 3}-сверхтождествах в обратимых {2, 3}-алгебрах с бинарной групповой операцией

В работе характеризуются обратимые $\{2,3\}$ -алгебры с бинарной групповой операцией и с уравновешенными $\{2,3\}$ -сверхтождествами первого рода длины 4.