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WEIERSTRASS AND BLASCHKE TYPE FUNCTIONS
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In the present paper the Weierstrass multipliers are generalized and the
theorem of convergence of corresponding infinite products is proved. Representa-
tions of Blaschke type functions are established through Weierstrass type
functions and Blaschke function. A way construction of new Blaschke type
products is shown, and a method of proof of their convergence is developed.
Some relations between Blaschke type products are established.
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1. The Weierstrass and Blaschke type infinite products play an important
role in the theory of classes factorization of functions, meromorphic in various
domains. In [1] it is shown, that quite wide classes of such products have identical

structure. Let D ={z :|z| < 1} be a unit disc, and G={z:Imz <0} be the bottom
half-plane. Denote

b(z,6)==2"2F, zceD;
1-¢z

B (6) =0 (6= "=, zceG.
z-¢
In [1] it is established, that for elementary factors bg) = b(i”(z,g) (/=12,3)
of Blaschke-Djrbashyan type infinite products, where a € (—1,+w), the following
integral representations are true:

BV

b (z,6) = exp I(l—t)“%, z,ceD, (1)
1
B P

b (z,6) = exp I(l;tj dt , z6€D, )
L \1+2) ¢
B

b (z,6)=exp f(l—t)“%, zceG, 3)
1
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where integrals are taken along any contours laying inside the disc D and passing
through points 1 and b(()” :b(()”(z,g) (I=1,2,3), and not passing through the
beginning of coordinates at z #¢ .

In [2], [3] it is proved, that if the sequence of complex numbers

Z={z,}; < D satisfies the condition

S(1-|z,]) " <0,  ae(-Ltw), @)
n=l1
then the infinite product
B (z.4z,) =16 (z.2,) ()
n=1

converges absolutely and uniformly inside D and represents an analytical function
with zeros Z.
In [4], [5] and [6] it is proved, that if the sequence of complex numbers

7= {zn}:O c G satisfies the condition

> (Imz,)"* <+,  ae(-1,+»), (6)
n=1
then the infinite product
B (z4z,) =[16{(z,2,) (1=2.3) (7
n=1

converges absolutely and uniformly inside G and represents an analytical function
with zeros Z. In [1] the following way of construction of new Blaschke-Djrba-
shyan type functions is shown. Denote by @ a class of analytic functions inside

the unit disc D, for which ¢(0)=1, and the integrals I@dt , 0< |z| <1, taken
1

along contours, laying inside the disc D, connecting the points 1 and z and not
passing through zero, converge. For ¢ € @ introduce the functions
»O

b(f,”(z,g)zexp{ [ @dr} (1=12), @®)
1

where z,c € D when /=1, and z,6 € G when /=2, connecting the points 1 and
bé” = b(()”(z,g) (/=1,2,3) and not passing through zero at z # ¢ . Obviously, in (8)

instead of functions A" (z,¢) one may take other functions, analytic in D or G.
2. The function

is called the Weierstrass primary multiplier. Let o ={a,}” be a sequence of
. & . .
complex numbers, and the series Zfzk converges at |z| <. Consider the entire
k=1

function
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Ea(z)z(l—z)exp{zﬁzk}.
=k
If a =1 for k=12,.,q9, and oo, =0 for k=g+1,g+2,.., then

E,(2)=E(z.q).
Theorem 1. Let k=q=>1 be the least integer, at which «, is not equal to

1 and the sequence « is bounded: |ak| <M,k=12,... Then
1 . .
1) at |z]< 3 the inequality |log £, (z)| < 2M|z|q+1 holds;

2) if for the sequence Z={z,}” of complex numbers the series

—g-1
converges, then the infinite product

T1E, (—j )
n=1 z

n

V4

Sz,

n=l

in each bounded part of the plane, the zeros of which coincide with Z, converges
absolutely and uniformly to an entire function.

Proof. We assume that |z| <1- . Then
2(g+1)
& a |Z|q+1 M |Z|q+1 Y
|1OgEa (Z)| = k:qu?ka < p ] (|aq+l +|(Xq+2 +) Sﬁl__|z|£ 2M|Z|q .
Since 1— ! > 1 , the statement 1) of Theorem 1 is proved.
2(g+1) 2

For the proof of the statement 2) note that at |z| <%r £%|zn| the following

logE, (ij
Zn

. . 1 . .
converges uniformly in |z|<5r, if n, is large enough, and,

2" M
<

| |q+1 2q| |q+1 . Therefore, a series
z, z,

inequalities are valid: <2M

logE, (ij
Zn

therefore, the product (9) converges absolutely and uniformly.

00

2

n=ngy

3.Let pe® and o(n)=1+Y B,1", |f|<r (r>1).
n=1

Theorem 2. Functionsbé,” :b(f,”(z,g), [=1,2, can be represented as
n(mn—1)---(n—m+1)
m! '

b (2,6) = E,(1-b"(z,¢)), where o = (=)' Y. B,C, C)' =
n=k
Proof. For |t| <r—1 we have

q)(tz = = Zﬂntn_l = ilﬂn 1-a —t))n_l = iﬂ":z_ocf—l(_l)k(l —l)k _

n=1
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:i(_l)k[ > B.C,. 1}(1_t)k :ialm(l_t)k
k=0 k=0

n=k+1
Applying term by term integration over the contours, laying inside the
disc D and connecting the points 1 and z (|z| <r—1), we obtain

j.q)(t:_ldl‘—zakﬂ(l K+l Z?k(l_z)k'
1

ik st

Thus, if |z|<r—1, then
Ea(l—z):zexp{z E1-z) } —zexp{fq)(—dt} =exp{j@dl}. (10)
P I

Now, the statement of Theorem 2 follows from (8), (10) and the uniqueness
theorem of analytical functions.

Example 1. Let p be natural number and ¢@()=(1-¢)". Then

D
(o(t):1+2(—1)"CZt", B,=(=D"C, when n<p, and B, =0 when n>p,

Opp1 = (1) Zﬂn n-l+

n=k+1

1-1)? -1

On the other hand, p(H)-1 = (
t

o,,,=—1 when £=0,1,..,p-1, and «,,,=0 when k=p,p+1,... Thus, we

=—((1-0)""+1=-0)"*+...+1), ie.

get b(f,”(z,g) =E(1-b"(z,¢),p—1), [=1,2. This representation is proved by
M.M. Djrbashyan [3] (see also [7]).

4. Let pe® and @(t)=1+) B,1", t|<1. From (8) it follows that for
n=l1

functions b(:,l) = b(”(z,g) , [ =1,2, representations are true
B (2,6) ="z, g)exp{ﬂo + Z () (2. )} (1)

n

where the limit 3 = exists due to the definition of class @ .

-1 n
H<1"

Example 2. Let a>-1 be any real number and ¢(¢)=(1—-¢)". Then
(=07 =143 BO(a)" , where B0 (o) = (1 ZEZDl@znt D oy
n=1

n!
Note that B (a)>0 for -1<a <0, and B"(a)<0 for 0<a <1.

1_ o
Example 3. Let a>-1 be any real number and (o(t)z[l—tj . Then
+t

G;g =1+ Zﬂr(zz)(a)tn , where S (a0) = 2a,
+ n=1



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, Ne 1, p. 3-8. 7

B (a)= (;) [ZC a(a=1)--(a—k+Da(a+1)-(a+n—k-1)+

+a(a—1)-(a—n+D)+a(@+1)--(a+n-1)), n>2.
There holds also the recurrent formula
- n-1 1--- k-1
P (@)= 1y -pLethternth) Seter D @rkoD go ).
n! k=1 kl
Note that B (a)>0 for —1<a <0, and sgn % (a)=(-1)" for 0<a <1,
n>1.
From the following obvious inequalities

Re(

n=l

and formulas (7) we obtain l ' < lbé”(z,g)l when B, 20 (n21),

lb;j)(z,g)l Zlb(()”(z,g)l when 8, <0 (n21).
Particularly, due to (1), (2), (3) the following inequalities hold:
B (2,0)|<[B(z.6)| when —1<a <0 (=123, (12)

lb;,”(z,g)l > lb(g”(z,g)l when 0<a <1(I=13).

The inequality (12) in case /=2 is established in [5] with the help of other
method.

If ll—bé”(z,g)l<l, then writing the functions b{" = b(:f)(z,g) in the form

15| (1+7re®)

b(,(,l)(Z,G) =exp _([ (01+—reg e?dri, where 9=arg(h{” 1), we obtain the
inequalities
="

llogb;,”(z,g)l | l¢(1+re )ldr (1=1,2). (13)

1
—\1 W
Assume that |(o(t)| = O(|1 - t|p
to (13) the inequality holds

I+p
llogb(f,l) (z,g)‘ <o) ll —p" (Z,g)l

e 14
1-|1-5{"| (9
R Z|SR<1 we have
2

0) l l 2 —leh: 1

-6 (z,0)|= i gz|s = (1=lsl)s (15)
for ceG, Imz<-p <0 we have

li—b32>(z,g)l=M<3|img| . (16)

z=¢| p
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From inequalities (14), (15), (16) the convergence conditions (4), (6) of
infinite products (5), (7) follow immediately.
Example 4. The case of analytic function ¢ with singularity in a point z =1
t 1
is of interest. Let @(¢f)=e! =e-e’"!, te D. From (13), (16) in the case z,c G,

|Imz|2p>0,

Irng| S§ we get the following estimation:

-4 coss @ _
‘logb(f,z)(z,g)‘ﬁ% I e’ dr£3‘b32)(z,g)—l‘exp 1+M <
0

2
B (z,6) -1

6\/g 1 |Imz|
<— — .
Himsioe|

Thus, if for the sequence {z,},

H—>00

cG (1im Imz, :0) for any p >0 holds

_pr
e mal ¢ oo, (17)
n=1
© b (z.z,) L
then the infinite product B(:f)(z,{zn}) =]Iexp f e - converges absolu-
n=1 1

tely and uniformly in any half-plane {z:Imz<-p}, and represents functions

analytic in half-planes G with zeros {z,},”. For example, if |Imzn| = , then

log2 n

the condition (17) holds, but none of conditions (6) is satisfied.
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Q. 9. Uhpuybjjui, Q. U. Uhpuybput.
Quykpgnpuuh b fyupkh nhuh dnlghwiibp

Uohmwnwiipmd  puphwipugyws i dugkppupuuh wpuwnphsibpp b
wyugnigyws bk huwdwyuwnwupwh widbkpe wpnwunpyuitiph qniquup-nnipyuh
phinpbup: Uywgnigqus L Fpjuplhth whwyh dmiuljghwibph ubpljuyugmdubtp
Qwjkpznpuuh whyh b fyuplkh $mulghwikph dhongny: Fipjwsd E Fyupyth
nhyh Pmblghwitph Junnigdwt b npubg qniquuhnnipnibt wwyugnighine
Utipnn: Unwgwé b npny wnbsmipiniubtp fpuplikh wmhyh wpuwnppuubph
Uhol:

I'. B. Mukaenss, 3. C. MukaeJsia.

®ynkuny THna Beiiepmrpacca u biasmke

B nmanHo#i craTthe 0000IIEHBI MHOXUTENM BeliepmTpacca u JokazaHa
TeopeMa CXOJMMOCTH COOTBETCTBYIOIIUX OECKOHEUHBIX MPOU3BEEHUH. Y CTaHOB-
JieHbl ipeacTaBieHus GyHkumid Tuna bismke yepes Gpynkuun Tuna Beitepmtpacca
u ¢ynknuu brsmke. YkasaHel cnoco0 MOCTPOEHHS HOBBIX NPOW3BEASHUN THIIA
brsimke u Meron Joka3aTenbCcTBA MX CXOAMMOCTH. Y CTaHOBJIEHBI HEKOTOPBIE
COOTHOUIEHUSI MEX]ly TPOU3BENCHUSIMH THITA bisike.



