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ON FACTORIZATION OF A CLASS OF SECOND ORDER
MATRIX-FUNCTIONS

A.V.SARGSYAN"

Chair of Differential Equations, YSU

The paper suggests a factorization construction method for a class of second
order matrix-functions. The left lower element of these matrix-functions may be
represented as combinations of other three elements of matrix-function and two
functions, meromorphic respectively in interior and exterior regions of the unit

disk.

Keywords: factorization, matrix-function, partial indices.

1°. We denote by W the Wiener algebra of continuous functions defined on
the unit circle 7" and representable as absolutely convergent Fourier series. By

W™ we denote the set of all those matrix-functions (MF) of ordernxm, the
components of which belong to W . For short we use standard notations W" and
W instead of W™ and W™ .

1 . .
Let <f>k =5 If(z) 2z dz be the Fourier coefficients of /€ W™ . We
27i

define by equalities
Jj-1

0= St B =31,

projections P;° (j € Z) acting in W™ .

Consider the following spaces: W™ =ImB', W™ =ImPR,

W™ =ImF, . Under factorization of a MF G e W22 in W we understand its
representation in the form G=G AG,, where G_, G_' eW>*, G, G.' eW?,
A(t):diag[t%‘,t”q, tel, 1, x2€Z and y;<y,. The numbers 1y, y» are

called partial indices of the MF G. Constructive methods for building
factorizations are known only for narrow classes of matrix-functions (see, e.g.,

[1-6]).
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Let G, G,,,G,,, h,h, eW . We assume that there exist some polynomials
qg_and g, (degq_=v,, degq, =n_), whose roots lie correspondingly in /", and

. . h
I, and there exists a non-negative integer N (N >n_), such that p_= %_N1 ew_,
T

P, =q h,eW,_, where t(¢t)=t (tel).
A class of second order matrix-functions, defined on the unit circle
r :{ze(C; |z|:1} of a form

G- [ Gy, G, j (1)

"Gy, + Gy — Gy, Gy,
under assumption that 4, h, are meromorphic functions correspondingly in
domains " = {z eC; |z| > 1} and . = {z eC; |z| < 1} , 1s considered in [7]. In [7]

we obtained some explicit formulas for the partial indices of MF of the form (1).
In the present paper for this class of matrix-functions we suggest a constructive
method of recovering factors G, . The matrix-function factorization problem (1) is

reduced to a successive factorization of two scalar functions and to the solution of
explicit finite systems of linear equations.
2°. We assume below that

q.(0)=0. 2

This assumption is not essential by the following reason. If ¢_ (0) =0 and

a el are such that ¢ (a)#0, then it is not difficult to verify, that MF
G, =Go¢, where {(z)=(z+a)/(1+az), also has structure of (1), if one replaces

q_ with q_(f)=(1+at)"* q_(£(t)). One can easily see, that g_(0)=gq_(a)%0.

Besides, since ¢ maps /' into I, then factorization of MF G in a simple way is
restored by factorization of G, .
3°. We consider functions

V,=t"(q.G,, - p.G)/(a.q), Va=t"@"q,Gp—p G)/(a.q). B

Further, we assume that the following conditions are satisfied
V=0 (el). 4
Factorization of MF G exists, if and only if conditions (4) are satisfied

(see [7]).

. 1
Assume that )(l.:deizz—varargVi(t) . i=12, yy=max{y, 1},
m

tel”

v_ :N+(Z1 _Zz)a

ViVyq,.q

Vi ovE
V+:[(1) V”] (6)
2

N-xn
Vi=expR (n(*V), i=12, V1§=V;exp7’0+($j’ (5)



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, Ne 1, p. 9-15. 11

The MF G, =t *G allows representation G, = AB (see [7]), where

q. n-x

=0 |f P 0 1 0

A=| N { e ]V, B=V+( j
p7 1 O 12 0 p+ q—
Y

), ]:5(]—|]|). We define also a
MF U=t"P (BYE (4") and B,, A (j>-v., j+v.>1), U, K,

(j>-v_) by following formulas:

<B_1>_1_; <B_1>_2_] <B_1>—v_—j+1
B, = <B_1>—2—]' <B_l>_3_; <B'1>_V__j

) , ™

<B_l>-v <B_1>—v S <B_1>—(v++v_)+2—}'

~ 1
For jeZ we denote j:E(j+|j

A
-1 -1
4= 00 (a7) o {4, , ®
0 0 0 (4
Wy Uy Co.
uj: <U>-2-] <U>-3-] <U>—v_—j—1 , (9)
<U>—v+ <U>—v+ -1 <U>—(v+ +v_ -
K, =U+BA, for v_+j>1, K, =U, forv_+j=1. (10)

Results of [7] imply, that partial indices of MF G, are equal to —v_+v, and
v, —v,, where v, =card{j; r; :20j +rj_1,j=—v_ +1,...,v+}. Here r, =v_,
r; =rangkC; for j>-v_ (particularly, 5, =v,), 6,=1 when j>0, and 6,=0
when j<0, jeZ.Wedenote § =—v_+v,+1, & =v, —v,+1.

4°. We denote by L; (j<0) the space of vector-polynomials of z7" of the
form i @ 2", where @ €C*>. For j=0 we assume that £, ={0}. Let

k=j

C*"=C’xC?x---xC?.  We define operators ¥, LC2D L

v+’

-1 ~
Y/jq: Z qktk’ where q:|:q—(v,+}').“q_l:|’ (’Ikec2 (k:_(v——"_j)""’_l)'

k=—(v_+))
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We define the families of Hankel operators H : Wf W, H: w? —>Wf
(j €Z) and Toeplitz operators 7, : Wf - Wf (jeZ) by formula

Hio=P (<470, Hio=P (/(B"9)). To=R ('Gyp).
Reasoning by analogy to the proof of Proposition 3 in [7], one can verify
that for j>-v_ the kernels of finite-dimensional operators K, = H;H;L are
(v-+7)

connected with kernels ICj by relations: kerICj =¥, kerICj. The Lemma in [7]
implies

N; =kerT, = {773‘1730+ (T}A_l'}’jq) ;q € kerle} , J>-V_. (11)

The Toeplitz operators 7, may be defined (by the same formula) on wider

spaces L, =T (L,(I')). Note that in this case kernels N, =ker7, are not

2x2

extendable. Indeed, since G,eW ™", then its any factorization in L, is a

factorization in W (see [2]). And since any solution 7;p =0 in L, has the form

G;l p , where p is a polynomial, then ¢ belongs also to Wf .
Along with the spaces N; (j€Z) we consider also hereditary spaces

N j=N;+7N, = {(o +1y; o,y eN j}. Taking into account the abovementioned

remark, it is easy to see that N ;N

41> J €Z. The direct complement M ; of

the space ]/\\]j in N, iscalled (2, ), -index subspace of MF G . It is known (see

[8]) that N, ={0} for j<& -1, and N, =N, for all jeZ\{&.&,). Besides,
the following statement is true.

Proposition 1. If & #¢&,, then spaces M s> M., are one-dimensional,
and if & =¢&,, then the unique nonzero (2, /), -index subspace M, _; is two-

dimensional.
Proof. Since MF G, allows factorization in the sense of the Section 1°,

then it allows factorization in the space L, (see [5]), and, therefore, it has a
finite (r,,2)-indexation (see [9], Theorem 4). Besides, the (r,,2)-partial indices
coincide with & -1, &,—1. Consequently, due to Theorem 5 in [§],
dmM,  +dimM, =2, if § #&,, and dimM,_, =2, if § =¢&,. Taking into
account that dim M o (i=1,2) are nonzero spaces (see [9]) , we complete the

proof of Proposition 1.
We choose vector-functions (VF) ¢, and ¢, as follows. Assume, that for

& #&, ¢ and @, are bases for index subspaces M £m and M 6e1 respectively,

and VFs ¢, and ¢, are a basis of subspace M, _, when & =¢,.
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We define G;' =[¢,,p,] (i.e. columns of MF G,' are formed with VFs g,
and ¢,), A, =diag[t‘f‘"l,t52_l] and G_=G,G;'A;", then the following statement

is true.
Proposition 2. The representation G, = G_A,G, is a factorization of MF G .

Proof. G, has a finite (r_,2)-indexation with (r_,2)-partial indices & -1,
&, —1, and, therefore, due to Theorem 2 from [9], the representation G, = G_A,G,
is a (r,,2)-index factorization. It follows from Theorem 4 [9], that G, is a

factorization in L, as well. Since G e W?>?, then a factorization in L, coincides

with factorization in W , i.e. with factorization in the sense of the Section 1° (see
[2]). The proof is thus completed.

5°. We introduce the spaces N;(0)={p(0);pe N}, K/,- (0)={p(0); p e Z/\\/,-}
and M ;(0)={p(0); peM,}. Obviously, N;(0)=N,(0), N,(0)=1{0} when
j<& -1, and M;(0)={0} when je{§-1& -1}. Let & =#¢&,. Since
detG,'(0)#0, then Propositions 1 and 2 imply dimM 51(0)=dim M, (0=
and M, ,(0) +M 51(0)= C*. Hence, taking into account the -equalities
N,(0ONM, (0)={0}, N, (0=N,(0)+M;(0), jeZ (see [8]), we get
N, (0)=--=N, ,(0=M, ,(0) and N,=C* for j>&,. For & =& we have
dimM, ,(0)=2,and for j>&, weget N,=C>.

6°. For jeZ, satisfying the inequality v_+ } >1, we define matrices K

by formula K =[<A"1> } ...<A"1> i } Vectors g, € (C2(V’+g') , q,€C

v_—j 1-j

2(r-+22) are

called a factorization pair for the MF G, if g, ekerC. (i=12), and vectors
p 4; Z
-4,» K. g, are nonzero and linearly independent. Obviously, the existence of
factorization pair g,, g, is equivalent to the existence of nonzero linearl
p 91> 49, q y

independent vectors y,,y, € C*, such that

K 0 q
- (?’}o, i=1,2, (12)
Ke =B\

where E, is a unity matrix.
Proposition 3. MF G possesses a factorization pair.
Proof. Assume that v_ +}' >0 and peN ;- Due to (11) there exists

52[9_(K+})““]-1]€ker’9 (g,€C?, s=—(v_+j),...,j—1), such that

e ~ _1
H=t' BB (/AW q|. Using equality (¥ .q)(t)= g,t*, one can
¢ 0 J J . Tk
k= (v_+})
verify that
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w(t)=31(t)i[ i <A’1>m7k7}. qk]t'”*‘7~ (13)

m=0\_k=—(v_+))
B(0) is an invertible matrix, and hence N,;(0)= {B_I(O)ICjﬁ; g ekerk;}.
Now the existence of the factorization pair follows from the properties of spaces
N;(0) (see Section 5°). Proposition is thus proved. Note also that in the

neighborhood of z =0 the function B(z)@(z) is analytical, and, therefore,
-1

3 <A‘1> g, =0, m=0,1...,j-1. (14)

v+ mk=j
7°. The maifl Eeézft of the present paper is the following
Theorem. Let g,, g,be a factorization pair for G, y, =& + x,,
¢ =B (OHY.q,, i=12, (15)
G, =[p,, 0,1, A(t) =diag[t",t*], G.=GG,'A™".

Then the representation G = G_AG, is a factorization of MF G .

Proof. 1t follows from the definition of factorization pair that K. g, =0
(i=1,2). Dueto (11), VFs ¢, , defined by the equality (15), belong to spaces N, .

We consider first the case & =¢,. Since K.q, and K:g, are linearly
independent and det B(0) =0, then ¢,(0) and ¢,(0) are linearly independent as
well. Therefore, VFs ¢@,, ¢, are also linearly independent. We have N, s =M,
and hence ¢, ¢, form a basis of M, _,, and the proof of Theorem follows from
Proposition 2.

Assume now & #&,. @(0)=0, ie. ¢ #0, since detB(0)#0 and
5'1‘71 #0 . Further, M g1 =Ng is an one-dimensional space, and, therefore, ¢, is
the basis of this space. Since K.g, and K. g, are linearly independent, then
vectors ¢,(0), ¢,(0) are also linearly independent. Taking into account that
Ne 0)=N, : (0) =span{p,(0)}, we obtain that ¢,(0)e N, - 0)= N & (0). Thus,

P, €N, but ¢, ¢ ]/\\752_1 , 1.e. @, belongs to some subspace M, . 1t remains to

apply the Proposition 2.

Theorem is thus proved.

Basing on the Theorem proved above we suggest the following scheme of
constructing a factorization of the MF G:

1. Constructing MF V, according to (5), (6).
2. Constructing matrices K, (j=-v_+1,...,v, ) according to (7)—(10).
3. Determining numbers r; =rangkC; (j=-v_+L...,v,), r, =v_, Vv, &,

i ( i= 1, 2 )
4. Constructing a factorization pair according to (12).
5. Recovering the factorization of the MF G by means of formulas (15).
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U. 4. Uupquub
Gplpnpn upgh npnp nuuh dwnphg-pniijghunbph pwljnnpugdwt dwuh

Usjiwwnwiipmd wnweowpyymd b tpypnpn Jupgh npny nuup dwwnphg-
dnrtujghwibph dwlunpugdut tnubwly: Ujn dwnphg-dniujghwubph unnpht
dwju wuppp gpynud £ dwnphg-pniijghugh dbwgws tplip mwppbph b Gpynt
dbipnunpd  Pmulghwibph hwdwlgnipjudp, npnup hwdwywunwupwbwpwp
npnoyws L dhwynp oppwtiugsh wpuwpht b ukpphtt mppnyputpnid:

A. B. Caprcsn.
O ¢daxTopu3anuu 0IHOro0 Kjiacca MaTpuL-GpyHKIMI BTOPOro MOpsiiKa

B pabore mpeanaraercs MeToA MOCTPOeHHA (aKTOPU3AIMU OIHOTO Kiacca
MaTpHL-PYHKIUH BTOPOro Nopsiaka. JIeBbIi HIDKHUN DJIEMEHT 3TUX MaTpHL-(yHK-
LI 3aIUCHIBAETCS ¢ IOMOLIbI0 KOMOMHALIMI OCTaNbHBIX TPEX AJIEMEHTOB U JBYX
MepoMOpGHBIX (YHKIHUH, KOTOPBIE ONPEAEIAIOTCS COOTBETCTBEHHO BHYTPH U BHE
€IMHUYHOr0 Kpyra.



