Physical and Mathematical Sciences

2010, № 1, p. 9–15

Mathematics

ON FACTORIZATION OF A CLASS OF SECOND ORDER MATRIX-FUNCTIONS

A. V. SARGSYAN*

Chair of Differential Equations, YSU

The paper suggests a factorization construction method for a class of second order matrix-functions. The left lower element of these matrix-functions may be represented as combinations of other three elements of matrix-function and two functions, meromorphic respectively in interior and exterior regions of the unit disk

Keywords: factorization, matrix-function, partial indices.

1°. We denote by W the Wiener algebra of continuous functions defined on the unit circle Γ and representable as absolutely convergent Fourier series. By $W^{n\times m}$ we denote the set of all those matrix-functions (MF) of order $n\times m$, the components of which belong to W. For short we use standard notations W^n and W instead of $W^{n\times l}$ and $W^{1\times l}$.

Let
$$\langle f \rangle_k = \frac{1}{2\pi i} \int_{\Gamma} f(z) z^{-k-1} dz$$
 be the Fourier coefficients of $f \in W^{n \times m}$. We

define by equalities

$$(\mathcal{P}_{j}^{-}f)(t) = \sum_{k=-\infty}^{j-1} \left\langle f \right\rangle_{k} t^{k} , \quad (\mathcal{P}_{j}^{+}f)(t) = \sum_{k=j}^{+\infty} \left\langle f \right\rangle_{k} t^{k}$$

projections \mathcal{P}_{j}^{\pm} $(j \in Z)$ acting in $W^{n \times m}$.

Consider the following spaces: $W_+^{n\times m}=\operatorname{Im}\mathcal{P}_0^+$, $W_-^{n\times m}=\operatorname{Im}\mathcal{P}_1^-$, $\mathring{W}_-^{n\times m}=\operatorname{Im}\mathcal{P}_0^-$. Under factorization of a MF $G\in W^{2\times 2}$ in W we understand its representation in the form $G=G_-\Lambda G_+$, where G_- , $G_-^{-1}\in W_-^{2\times 2}$, G_+ , $G_+^{-1}\in W_+^{2\times 2}$, $\Lambda(t)=\operatorname{diag}\left[t^{\times_1},t^{\times_2}\right]$, $t\in \Gamma$, χ_1 , $\chi_2\in Z$ and $\chi_1\leq \chi_2$. The numbers χ_1 , χ_2 are called partial indices of the MF G. Constructive methods for building factorizations are known only for narrow classes of matrix-functions (see, e.g., [1–6]).

.

^{*} E-mail: ann-sargsyan@yandex.ru

Let $G_{11}, G_{12}, G_{22}, h_1, h_2 \in W$. We assume that there exist some polynomials q_- and q_+ (deg $q_- = v_+$, deg $q_+ = n_-$), whose roots lie correspondingly in Γ_+ and Γ_- , and there exists a non-negative integer N ($N \ge n_-$), such that $p_- = \frac{q_+ h_1}{\tau^N} \in W_-$, $p_+ = q_- h_2 \in W_+$, where $\tau(t) = t$ ($t \in \Gamma$).

A class of second order matrix-functions, defined on the unit circle $\Gamma = \{z \in \mathbb{C} \; ; \; |z| = 1\}$ of a form

$$G = \begin{pmatrix} G_{11} & G_{12} \\ h_1 G_{11} + h_2 G_{22} - h_1 h_2 G_{12} & G_{22} \end{pmatrix}$$
 (1)

under assumption that h_1 , h_2 are meromorphic functions correspondingly in domains $\Gamma_- = \{z \in \mathbb{C} \; ; \; |z| > 1\}$ and $\Gamma_+ = \{z \in \mathbb{C} \; ; \; |z| < 1\}$, is considered in [7]. In [7] we obtained some explicit formulas for the partial indices of MF of the form (1). In the present paper for this class of matrix-functions we suggest a constructive method of recovering factors G_\pm . The matrix-function factorization problem (1) is reduced to a successive factorization of two scalar functions and to the solution of explicit finite systems of linear equations.

2°. We assume below that

$$q_{-}(0) \neq 0. \tag{2}$$

This assumption is not essential by the following reason. If $q_-(0)=0$ and $\alpha \in \Gamma_+$ are such that $q_-(\alpha) \neq 0$, then it is not difficult to verify, that MF $G_\zeta = G \circ \zeta$, where $\zeta(z) = (z+\alpha)/(1+\overline{\alpha}z)$, also has structure of (1), if one replaces q_- with $\hat{q}_-(t) = (1+\overline{\alpha}t)^{\nu_+}q_-(\zeta(t))$. One can easily see, that $q_-(0) = q_-(\alpha) \neq 0$. Besides, since ζ maps Γ_+ into Γ_+ , then factorization of MF G in a simple way is restored by factorization of G_ζ .

3°. We consider functions

$$V_1 = \tau^N (q_- G_{11} - p_+ G_{12}) / (q_+ q_-), \quad V_2 = \tau^N (\tau^{-N} q_+ G_{22} - p G_{12}) / (q_+ q_-).$$
 (3)

Further, we assume that the following conditions are satisfied

$$V_i(t) \neq 0 \quad (t \in \Gamma). \tag{4}$$

Factorization of MF G exists, if and only if conditions (4) are satisfied (see [7]).

Assume that $\chi_i = \operatorname{ind} V_i = \frac{1}{2\pi} \operatorname{var} \operatorname{arg} V_i(t) \Big|_{t \in \Gamma}$, $i = 1, 2, \quad \chi_0 = \max \{ \chi_1, \chi_2 \}$, $V_- = N_+(\chi_1 - \chi_2)$,

$$V_i^{\pm} = \exp \mathcal{P}_0^{\pm} (\ln(t^{-\chi_i} V_i)), \quad i = 1, 2, \quad V_{12}^{\pm} = V_2^{\pm} \exp \mathcal{P}_0^{\pm} \left(\frac{\tau^{N-\chi_1} G_{12}}{V_1^- V_2^+ q_+ q_-} \right), \tag{5}$$

$$V_{\pm} = \begin{pmatrix} V_1^{\pm} & V_{12}^{\pm} \\ 0 & V_2^{\pm} \end{pmatrix}. \tag{6}$$

The MF $G_0 = \tau^{-\chi_0}G$ allows representation $G_0 = AB$ (see [7]), where

$$A = \begin{pmatrix} \frac{q_{+}}{t^{N}} & 0 \\ p_{-} & 1 \end{pmatrix} \begin{pmatrix} t^{\chi_{1} - \chi_{0}} & 0 \\ 0 & t^{\chi_{2} - \chi_{0}} \end{pmatrix} V_{-}, \quad B = V_{+} \begin{pmatrix} 1 & 0 \\ p_{+} & q_{-} \end{pmatrix}.$$

For $j \in Z$ we denote $\hat{j} = \frac{1}{2} (j + |j|)$, $\check{j} = \frac{1}{2} (j - |j|)$. We define also a MF $U = \tau^{-\nu_-} P_{\nu_-}^-(B^{-1}) P_{\nu_-}^+(A^{-1})$ and \mathcal{B}_j , \mathcal{A}_j $(j > -\nu_-, \hat{j} + \nu_- > 1)$, \mathcal{U}_j , \mathcal{K}_j $(j > -\nu_-)$ by following formulas:

$$\mathcal{B}_{j} = \begin{pmatrix} \left\langle B^{-1} \right\rangle_{-1-\bar{j}} & \left\langle B^{-1} \right\rangle_{-2-\bar{j}} & \dots & \left\langle B^{-1} \right\rangle_{-\nu_{-}-j+1} \\ \left\langle B^{-1} \right\rangle_{-2-\bar{j}} & \left\langle B^{-1} \right\rangle_{-3-\bar{j}} & \dots & \left\langle B^{-1} \right\rangle_{-\nu_{-}-j} \\ \dots & \dots & \dots \\ \left\langle B^{-1} \right\rangle_{-\nu_{+}} & \left\langle B^{-1} \right\rangle_{-\nu_{+}-1} & \dots & \left\langle B^{-1} \right\rangle_{-(\nu_{+}+\nu_{-})+2-\hat{j}} \end{pmatrix}, \tag{7}$$

$$\mathcal{A}_{j} = \begin{pmatrix}
0 & \left\langle A^{-1} \right\rangle_{\nu_{-}-1} & \left\langle A^{-1} \right\rangle_{\nu_{-}-2} & \dots & \left\langle A^{-1} \right\rangle_{1-\hat{j}} \\
0 & 0 & \left\langle A^{-1} \right\rangle_{\nu_{-}-1} & \dots & \left\langle A^{-1} \right\rangle_{2-\hat{j}} \\
\dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & \left\langle A^{-1} \right\rangle_{\nu_{-}-1}
\end{pmatrix},$$
(8)

$$\mathcal{U}_{j} = \begin{pmatrix} \langle U \rangle_{-1-\bar{j}} & \langle U \rangle_{-2-\bar{j}} & \dots & \langle U \rangle_{-\nu_{-}-j} \\ \langle U \rangle_{-2-\bar{j}} & \langle U \rangle_{-3-\bar{j}} & \dots & \langle U \rangle_{-\nu_{-}-j-1} \\ \dots & \dots & \dots \\ \langle U \rangle_{-\nu_{+}} & \langle U \rangle_{-\nu_{+}-1} & \dots & \langle U \rangle_{-(\nu_{+}+\nu_{-})+1-\hat{j}} \end{pmatrix},$$
(9)

$$\mathcal{K}_i = \mathcal{U}_i + \mathcal{B}_i \mathcal{A}_j \text{ for } v_- + \hat{j} > 1, \ \mathcal{K}_i = \mathcal{U}_j \text{ for } v_- + \hat{j} = 1.$$
 (10)

Results of [7] imply, that partial indices of MF G_0 are equal to $-v_- + v_0$ and $v_+ - v_0$, where $v_0 = \operatorname{card}\left\{j\;;\; r_j = 2\theta_j + r_{j-1},\; j = -v_- + 1,\ldots,v_+\right\}$. Here $r_{-v_-} = v_-,$ $r_j = \operatorname{rang}\mathcal{K}_j$ for $j > -v_-$ (particularly, $r_{v_+} = v_+$), $\theta_j = 1$ when j > 0, and $\theta_j = 0$ when j < 0, $j \in Z$. We denote $\xi_1 = -v_- + v_0 + 1$, $\xi_2 = v_+ - v_0 + 1$.

 $\mathbf{4^{o}}. \text{ We denote by } \mathcal{L}_{j} \text{ } (j < 0) \text{ the space of vector-polynomials of } z^{-1} \text{ of the form } \sum_{k=j}^{-1} \varphi_{k} z^{k} \text{ , where } \varphi_{k} \in \mathbb{C}^{2}. \text{ For } j = 0 \text{ we assume that } \mathcal{L}_{0} = \left\{0\right\}. \text{ Let } \mathbb{C}^{2n} = \mathbb{C}^{2} \times \mathbb{C}^{2} \times \dots \times \mathbb{C}^{2}. \text{ We define operators } \Psi_{j} : \mathbb{C}^{2(v_{-}+\hat{j})} \to \mathcal{L}_{-(v_{-}+\hat{j})}, \\ \Psi_{j} q = \sum_{k=-(v_{-}+\hat{j})}^{-1} q_{k} t^{k} \text{ , where } q = \left[q_{-(v_{-}+\hat{j})} \cdots q_{-1}\right], \quad q_{k} \in \mathbb{C}^{2} \text{ } (k = -(v_{-}+\hat{j}), \dots, -1).$

We define the families of Hankel operators $H_j^-: \mathring{W}_-^2 \to W_+^2$, $H_j^+: W_+^2 \to \mathring{W}_-^2$ $(j \in Z)$ and Toeplitz operators $T_j: W_+^2 \to W_+^2$ $(j \in Z)$ by formula

$$H_j^-\varphi = \mathcal{P}_0^+\left(\tau^{\hat{j}}(A^{-1}\varphi)\right), \ H_j^+\varphi = \mathcal{P}_0^-\left(\tau^{\bar{j}}(B^{-1}\varphi)\right), \ T_j\varphi = \mathcal{P}_0^+\left(\tau^{-j}G_0\varphi\right).$$

Reasoning by analogy to the proof of Proposition 3 in [7], one can verify that for $j > -v_-$ the kernels of finite-dimensional operators $\mathcal{K}_j = H_j^+ H_j^- \Big|_{\mathcal{L}_{-(v_- + j)}}$ are connected with kernels \mathcal{K}_j by relations: $\ker \mathcal{K}_j = \Psi_j \ker \mathcal{K}_j$. The Lemma in [7] implies

$$N_{j} = \ker T_{j} = \left\{ \tau^{\bar{j}} B^{-1} \mathcal{P}_{0}^{+} \left(\tau^{\hat{j}} A^{-1} \Psi_{j} q \right); q \in \ker \mathcal{K}_{j} \right\}, \quad j > -\nu_{-}.$$
 (11)

The Toeplitz operators T_j may be defined (by the same formula) on wider spaces $L_2^+ = \mathcal{P}_0^+(L_2(\Gamma))$. Note that in this case kernels $N_j = \ker T_j$ are not extendable. Indeed, since $G_0 \in W^{2\times 2}$, then its any factorization in L_2 is a factorization in W (see [2]). And since any solution $T_j \varphi = 0$ in L_2^+ has the form $G_+^{-1}p$, where p is a polynomial, then φ belongs also to W_+^2 .

Along with the spaces N_j $(j \in Z)$ we consider also hereditary spaces $\widehat{N}_j = N_j + \tau N_j = \left\{ \varphi + \tau \psi \; ; \; \varphi, \psi \in N_j \right\}$. Taking into account the abovementioned remark, it is easy to see that $\widehat{N}_j \subset N_{j+1}, \; j \in Z$. The direct complement M_j of the space \widehat{N}_j in N_{j+1} is called $(2,j)_+$ -index subspace of MF G_0 . It is known (see [8]) that $N_j = \left\{ 0 \right\}$ for $j \leq \xi_1 - 1$, and $N_j = \widehat{N}_{j-1}$ for all $j \in Z \setminus \left\{ \xi_1, \xi_2 \right\}$. Besides, the following statement is true.

Proposition 1. If $\xi_1 \neq \xi_2$, then spaces M_{ξ_1-1} , M_{ξ_2-1} are one-dimensional, and if $\xi_1 = \xi_2$, then the unique nonzero $(2,j)_+$ -index subspace M_{ξ_1-1} is two-dimensional.

Proof. Since MF G_0 allows factorization in the sense of the Section 1°, then it allows factorization in the space L_2 (see [5]), and, therefore, it has a finite $(r_+,2)$ -indexation (see [9], Theorem 4). Besides, the $(r_+,2)$ -partial indices coincide with ξ_1-1 , ξ_2-1 . Consequently, due to Theorem 5 in [8], $\dim M_{\xi_1-1}+\dim M_{\xi_2-1}=2$, if $\xi_1\neq\xi_2$, and $\dim M_{\xi_1-1}=2$, if $\xi_1=\xi_2$. Taking into account that $\dim M_{\xi_i-1}$ (i=1,2) are nonzero spaces (see [9]), we complete the proof of Proposition 1.

We choose vector-functions (VF) φ_1 and φ_2 as follows. Assume, that for $\xi_1 \neq \xi_2$ φ_1 and φ_2 are bases for index subspaces M_{ξ_1-1} and M_{ξ_2-1} respectively, and VFs φ_1 and φ_2 are a basis of subspace M_{ξ_1-1} when $\xi_1 = \xi_2$.

We define $G_+^{-1}=\left[\varphi_1,\varphi_2\right]$ (i.e. columns of MF G_+^{-1} are formed with VFs φ_1 and φ_2), $\varLambda_0=\mathrm{diag}\left[t^{\xi_1-1},t^{\xi_2-1}\right]$ and $G_-=G_0G_+^{-1}\varLambda_0^{-1}$, then the following statement is true

Proposition 2. The representation $G_0 = G_- \Lambda_0 G_+$ is a factorization of MF G_0 . Proof. G_0 has a finite $(r_+,2)$ -indexation with $(r_+,2)$ -partial indices ξ_1-1 , ξ_2-1 , and, therefore, due to Theorem 2 from [9], the representation $G_0 = G_- \Lambda_0 G_+$ is a $(r_+,2)$ -index factorization. It follows from Theorem 4 [9], that G_0 is a factorization in L_2 as well. Since $G \in W^{2\times 2}$, then a factorization in L_2 coincides with factorization in W, i.e. with factorization in the sense of the Section 1° (see [2]). The proof is thus completed.

6°. For $j \in Z$, satisfying the inequality $v_- + \hat{j} \ge 1$, we define matrices \mathcal{K}'_j by formula $\mathcal{K}'_j = \left[\left\langle A^{-1}\right\rangle_{v_- - \bar{j}} ... \left\langle A^{-1}\right\rangle_{1 - j}\right]$. Vectors $\overline{q}_1 \in \mathbb{C}^{2\left(v_- + \hat{\xi}_1\right)}$, $\overline{q}_2 \in \mathbb{C}^{2\left(v_- + \hat{\xi}_2\right)}$ are called a factorization pair for the MF G, if $\overline{q}_i \in \ker \mathcal{K}_{\xi_i}$ (i = 1, 2), and vectors $\mathcal{K}'_{\xi_i} \overline{q}_1$, $\mathcal{K}'_{\xi_2} \overline{q}_2$ are nonzero and linearly independent. Obviously, the existence of factorization pair \overline{q}_1 , \overline{q}_2 is equivalent to the existence of nonzero linearly independent vectors $y_1, y_2 \in \mathbb{C}^2$, such that

$$\begin{pmatrix} \mathcal{K}_{\xi_i} & 0 \\ \mathcal{K}'_{\xi_i} & -E_2 \end{pmatrix} \begin{pmatrix} \overline{q}_i \\ \overline{y}_i \end{pmatrix} = 0, \quad i = 1, 2,$$
 (12)

where E_2 is a unity matrix.

Proposition 3. MF G possesses a factorization pair.

Proof. Assume that $v_- + \hat{j} > 0$ and $\varphi \in N_j$. Due to (11) there exists $\overline{q} = \left[q_{-(v_- + \hat{j})} \cdots q_{-1} \right] \in \ker \mathcal{K}_j$ $(q_s \in \mathbb{C}^2, \quad s = -\left(v_- + \hat{j}\right), \ldots, j - 1)$, such that $\varphi(t) = t^{\bar{j}} \ B^{-1}(t) \mathcal{P}_0^+ \left(t^{\hat{j}} A^{-1} \Psi_j q\right)$. Using equality $(\Psi_j q)(t) = \sum_{k=-(v_- + \hat{j})}^{-1} q_k t^k$, one can verify that

$$\varphi(t) = B^{-1}(t) \sum_{m=0}^{\infty} \left(\sum_{k=-(\nu_{-}+\hat{j})}^{-1} \left\langle A^{-1} \right\rangle_{m-k-\hat{j}} q_{k} \right) t^{m+\bar{j}}.$$
 (13)

B(0) is an invertible matrix, and hence $N_j(0) = \{B^{-1}(0)\mathcal{K}_j'\overline{q} \; ; \; \overline{q} \in \ker \mathcal{K}_j\}$. Now the existence of the factorization pair follows from the properties of spaces $N_j(0)$ (see Section 5°). Proposition is thus proved. Note also that in the neighborhood of z=0 the function $B(z)\varphi(z)$ is analytical, and, therefore,

$$\sum_{k=-(\nu_{-}+\hat{j})}^{-1} \left\langle A^{-1} \right\rangle_{m-k-\hat{j}} q_{k} = 0, \quad m = 0, 1, \dots, \breve{j} - 1.$$
 (14)

7°. The main result of the present paper is the following

Theorem. Let \overline{q}_1 , \overline{q}_2 be a factorization pair for G, $\chi_i = \xi_i + \chi_0$,

$$\varphi_i = t^{\xi_i} B^{-1}(t) H_{\xi_i}^- \Psi_{\xi_i} \overline{q}_i, \quad i = 1, 2,$$
(15)

$$G_{+}^{-1} = [\varphi_1, \varphi_2], \ \Lambda(t) = \operatorname{diag}[t^{\chi_1}, t^{\chi_2}], \ G_{-} = GG_{+}^{-1}\Lambda^{-1}.$$

Then the representation $G = G_{-}\Lambda G_{+}$ is a factorization of MF G.

Proof. It follows from the definition of factorization pair that $\mathcal{K}_{\xi_i} q_i = 0$ (i = 1, 2). Due to (11), VFs φ_j , defined by the equality (15), belong to spaces N_{ξ_i} .

We consider first the case $\xi_1=\xi_2$. Since $\mathcal{K}'_{\xi_1}\overline{q}_1$ and $\mathcal{K}'_{\xi_2}\overline{q}_2$ are linearly independent and $\det B(0)\neq 0$, then $\varphi_1(0)$ and $\varphi_2(0)$ are linearly independent as well. Therefore, VFs φ_1 , φ_2 are also linearly independent. We have $N_{\xi_1}=M_{\xi_1-1}$, and hence φ_1 , φ_2 form a basis of M_{ξ_1-1} , and the proof of Theorem follows from Proposition 2.

Assume now $\xi_1 \neq \xi_2$. $\varphi_1(0) \neq 0$, i.e. $\varphi_1 \neq 0$, since $\det B(0) \neq 0$ and $\mathcal{K}'_{\xi_1}\overline{q}_1 \neq 0$. Further, $M_{\xi_1-1} = N_{\xi_1}$ is an one-dimensional space, and, therefore, φ_1 is the basis of this space. Since $\mathcal{K}'_{\xi_1}\overline{q}_1$ and $\mathcal{K}'_{\xi_2}\overline{q}_2$ are linearly independent, then vectors $\varphi_1(0)$, $\varphi_2(0)$ are also linearly independent. Taking into account that $N_{\xi_1-1}(0) = N_{\xi_1}(0) = \operatorname{span}\{\varphi_1(0)\}$, we obtain that $\varphi_2(0) \notin N_{\xi_2-1}(0) = \widehat{N}_{\xi_2}(0)$. Thus, $\varphi_2 \in N_{\xi_2}$, but $\varphi_2 \notin \widehat{N}_{\xi_2-1}$, i.e. φ_2 belongs to some subspace M_{ξ_2-1} . It remains to apply the Proposition 2.

Theorem is thus proved.

Basing on the Theorem proved above we suggest the following scheme of constructing a factorization of the MF G:

- 1. Constructing MF V_{\pm} according to (5), (6).
- 2. Constructing matrices \mathcal{K}_j ($j = -v_- + 1, ..., v_+$) according to (7)–(10).
- 3. Determining numbers $r_j = \text{rang}\mathcal{K}_j$ $(j = -v_- + 1,...,v_+), r_{-v_-} = v_-, v_0, \xi_i, \chi_i$ (i = 1,2).
 - 4. Constructing a factorization pair according to (12).
 - 5. Recovering the factorization of the MF G by means of formulas (15).

REFERENCES

- Clancey K. and Gohberg I. Factorization of Matrix-Functions and Singular Integral Operators in Operator Theory: Advances and Appl. 3. Basel: Birkhäuser, 1981.
- Litvinchuk G.S. and Spitkovskii I.M. Factorization of Matrix-Functions. Berlin: Akademie Verlag, 1987.
- 3. Gavdzinskii V.N., Spitkovskii I.M. Ukr. Mat. J., 1982, v. 34(1), p. 15–19 (in Russian).
- 4. Feldman I., Gohberg I., Krupnik N. IEOT, 2004, v. 49, p. 149–164.
- Prösdorf S., Speck F.O. Proceedings of the Royal Society of Edinburgh, 1930, 115A, p. 119– 138.
- 6. **Amirjanyan H.A. and Kamalyan A.G.** Izv. NAN Armenii, Matematika, 2007, v. 42(6), p. 31–50 (in Russian).
- Kamalyan A.G. and Sargsyan A.V. Izv. NAN Armenii, Matematika, 2007, v. 42(3), p. 39–48 (in Russian).
- 8. **Kamalyan A.G.** Doklady NAN Armenii, 2007, v. 107(4), p. 316–322 (in Russian).
- 9. **Kamalyan A.G.** Doklady NAN Armenii, 2008, v. 108(1), p. 5–11 (in Russian).

Ա. Վ. Մարգսյան

Երկրորդ կարգի որոշ դասի մատրից-ֆունկցիաների ֆակտորացման մասին

Աշխատանքում առաջարկվում է երկրորդ կարգի որոշ դասի մատրիցֆունկցիաների ֆակտորացման եղանակ։ Այդ մատրից-ֆունկցիաների ստորին ձախ տարրը գրվում է մատրից-ֆունկցիայի մնացած երեք տարրերի և երկու մերոմորֆ ֆունկցիաների համակցությամբ, որոնք համապատասխանաբար որոշված են միավոր շրջանագծի արտաքին և ներքին տիրույթներում։

А. В. Саргсян.

О факторизации одного класса матриц-функций второго порядка

В работе предлагается метод построения факторизации одного класса матриц-функций второго порядка. Левый нижний элемент этих матриц-функций записывается с помощью комбинаций остальных трех элементов и двух мероморфных функций, которые определяются соответственно внутри и вне единичного круга.