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In the present paper the boundary value problem for the Sobolev type
equation

D Lu(tx))+ M (u(6x)) = £ (6x). 150, x=(,300%,) € 2 < B,
ot

u‘é’_() =0,
(Lu)(0,x) =g(x), xeQ,

is considered, where L and M are second-order differential operators. It is proved
that under some conditions this problem in the corresponding space has the unique
solution.
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1. Let 2 cR” be a bounded domain with the smooth boundary I". We
consider the following boundary value problem:

%L(u(t,x))+M(u(t,x))=f(t,x), t>0, x=(x1,...,xn)eQCRn, Q)
u|a 0=0 (2)
(Lu)(0,x)=g(x), xe, 3)
o 0 50 0
where L(u)= —Zg(b (t,x)glj}, M (u)= —zg(a (x)gj}

f(t,x)eL2((0,T);W;(Q)), g(x)em;(Q).
We suppose that the functions b, (¢,x) and a;;(¢,x) (i,j=12,...,n) are
defined in [0,T]><.(§ . by (t,x)zbﬁ(t,x), a;; (t,x)zaﬁ(t,x) (i,j=1,2,...,n)and
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for every t [O,T ] and x € Q the following quadratic form is positively defined:

Zn: bij(t’x)éiéj 2C0|§ 4)

i,j=1
where &=(&,...,&,), ¢, =const >0.
The case of the problem (1)-(3) with u|_, =g(x), instead of (3) (first

boundary value problem), has been considered by R.A. Aleksandrian [1],
G.S. Hakobyan, R.L. Shakhbaghyan [2], Kh. Gaevskii, K. Greger, K. Zakharis
[3], R.E. Showalter [4], H.A.Mamikonyan [5] etc.

In this paper we study a new boundary value problem.

2
>

For the fixed 7 €[0,7] we define mappings L(z) and M (r) from le(.Q)
to W5'(£2) by formulas

d ov Oow
L = b.. ——d 5
(0= 3,002 g
<M(t)v,w>= Zn: Ia. ‘(t,x)ﬁ~a—wdx, (6)
=T ox; 0Ox;

where veVonz(.Q) and we le(.Q) It is easy to see that for VveVonz(.Q)
formulas (5) and (6) define linear bounded functionals L(¢)v and M (¢)v, which
belong to W,'(£2). At the same time differential expressions L(u) and M (u)
generate operators (Lu)(¢)=L(¢)u(t,x) and (Mu)(t)=M (¢t)u(¢,x) that map

Lz(O,T;Vonz(.Q)j into L, (0.7:75(22)).

Let’s give some definitions (see [3, 4]). Let X be a real, reflexive Banach
space.

Definition 1. The operator 4: X — X" is called
e radially continuous, if for Vx,y e X the function ¢(s)= <A(x +5y), y>

is continuous in [0,1];
o Lipschitz-continuous, if there exists a positive constant M such that
||Ax— Ay”* < M”x —y" for Vx,ye X ;
e monotone, if <Ax —Ay,x —y) >0 for Vx,ye X ;
e strictly monotone, if there exists a positive constant m such that

(Ax—Ay,x—y)Zm"x—y"2 for Vx,ye X .

Lemma 1. The operators L(r), M (t): le(.Q) w5 (Q)= [WIZ(Q)) are

radially continuous and uniformly bounded with respect to ¢.
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Proof. Indeed, for every functions v(x),w(x) € W 3(£2) we have

n 6(v+sw) ow
= L . = b . —~—d =
o(s) < ()(v+sw) w> 5::1}[; U(t x) o o, X
1 ov ow 1 ow ow
=3 (b, (t.x) 2. 2y b, (t,x) - ——dx =(L(1) v,w)+s (L({E) w,w).
Zl 'f(”)ax,. o x+st:uIZ 'f(’x)ax,. T (L(2) v,y s (L(2) w,w)

Similarly, we get (p(s) = <M (t)(v + sw),w> = <M (t)v, w> + s<M (t)w, w> R
hence the functionals ¢(s)and vy (s) are linear. From the formulas (5) and (6) it
follows that

n ov ow
b.. (t,x)— —d
ZI ”(t x)éx ox; *

i,j=1Q i j

<

()=

dx <¢ "V”V;/lz(_()) '”W"V;’lz(f?) ’

s i ”b,.j(t,x)”%

i,j=1Q

ow
ox;

hence we have ||L(t)v

<a M
.

|M(t)v

o . <q ||v||p;,17 . Now the Lipschitz
continuity of the operators L(¢) and M (¢) follows from their linearity.

Lemma 2. The operators L(t) are uniformly strictly monotone with
respect to ¢.

Proof. From condition (4) it follows that for every v(x),w(x)erz(.Q)

we have

KL(t)v—L(t)w,v— w>‘ :<L(t

~—
—~
<
|
=
~
<
|
=
-~
Il
—
S
<
—
o*
=
~
&
Vv

a(v—w) ?

ox;

1

ZCOI Zn:

2
abc=co||v—w||e1 .
Qi.j=1 LS

(2)

Definition 2. Let Xand Y be linear spaces and s=[0,7]. A mapping
G:L,(0,T;X)—>L,(0,7;Y) is called Volterra-type, if from the condition
u(s)=v(s) for almost all se[0,¢], teS, it follows that (Gu)(s)=(Gv)(s)
for almost all se[O,t]. It is evident that the operator M is of Volterra-type.

From the Lemma 1, Lemma 2 and Lemma 2.2 (see [1]) we get

Theorem 1. The operator L:Lz(O,T;Vonz(.Q)j—>L2(O,T;W;1(.Q)) is

radially continuous, strictly monotone, and there exists the inverse operator L',
which is Lipschitz continuous and

(L) (6)=L7(e) £ (¢) vee[0.T], Vf L, (0,T:/; ().
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Together with the problem (1)—(3), let’s consider the following one
{v' +Av=1f,
v(O) =g,
where A=ML":L, (O,T;WEI(Q)) —1L, (O,T;WEI(Q)) . Since the operator A

satisfies the conditions of Theorem 1.3 (see [3]), we conclude that the problem (7)

™)

has the unique solution. Denote it by v,. Then the function v, =L"'v is the

solution of the problem (1)-(3). Thus, we can formulate the following (see
Theorem 2.4, [3])

Theorem 2. Let the functions b, (t,x)=b;(t.x), a,(t,x)=a;(t,x)
(i,j=1,2,...,n) be continuous in the domain [0,7]x£2, and condition (4) holds
for any ¢ e [O,T ] and any x e 2. Then the problem (1)—(3) has a unique solution
and L(u)eC(0,7;'(22)), %(L(u)) e L,(0.7:W5(2)).

2. Now we consider the problem (1)-(3) with the assumption that the
operators L and M are second order nonlinear differential operators:

10 0
L(u)= _,Z:@_xi(bi (t,x,Vu)) . M(u)= _,Z:@_xi(ai (t,x,Vu)) ,
where the functions b,(1,x,&,,...,,), a,(t,x,&,,...,&,) are defined and continuous
in [0,7]xQ2xR", and have continuous derivatives with respect to & S
(j=12,...,n).

We suppose that the functions b,(7,x,&) and a,(t,x,&) (&=(&,....&, ),
i=1,2,...,n) satisfy the conditions:

1) |b,. (t,x,cf)| <q (|§| +1) , ¢q=const>0, i=12,...,n,

<c,, ¢,=const>0, i,j=12,...,n,

2) [p (6.x.¢)| = %

J

3) Zn: b (t.x,&)nm, = ¢ |77|2 vte[0,T], VxeQ and Vn=(n,,....n,) € R",

i,j=1

oa, (t,x,
o ex ) e, lg), xS

J

<c5, i,j=12,...,n.

For fixed 7€[0,T] define the operators L(z) and M (t) from le(.Q) to
w5'(2) by formulas

(L(t)v,w>=fjb,.(z,x,w)%dx, (7)
i=1Q i

1

i=1 Oox;

1

<M (t)v,w> =i£ai (t,x,Vu)a—wdx. (8)
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Operators L(¢) and M (t) (te[O,T ]) generate mappings L and M from
Lz(O,T;VOVlz(.Q)j to L, (O,T;WEI(Q)) by formulas

(1)) = L0 (0. o
(Mu)(t) =M (t)(u(t,x)). (10)
Lemma 3 ([5]). Let the conditions 1)-3) hold. Then the operator L(f) is

radially continuous and strictly monotone.
Proof. For every s,,s, €[0,1] we have

|(0(S1)_(0(S2 )| :KL(t)(”l +31V)>V>_<L(t)(”2 +S2V)>V>‘ =
= KL(t)(u +s5v)—L(1)(u+ szv),v>‘ =

I t x,Vu+s Vv) b, (t,x,Vu +s2Vv)ﬁdx
10

T M:

ox

i

Slb>

=100

<cis-sibf,,

6b (t x,Vu+sVv+1(s, - sl)Vv)(S L )QQ didy
J=1 aéj 2 1 ax’ axf

thus, the operator L(7) is radially continuous.

Now we prove that the operator L (t) is strictly monotone. Indeed, from the
condition 3) we get

M:

1

I[b t X, Vu) b, (t,x,Vv):la(u_v)dx =

i

:Zﬁ:i” (thv+r (Vu— Vv))

o(u—v) o(u—v
( ) . ( )dtdx 2c ||u _v"2° .
x; ox; wy(€)
The proof of Lemma 3 is complete.
It is easy to verify that the operator

L, (O,T;Vf/;(g)j - L,(0.7:75'())

is Lipschitz continuous and of Voltera type. From Lemma 2 and Lemma 2.2
(see [3]) it immediately follows

Lemma 4. The operator L: L, (O,T;VOVE(.Q)j 1L, (O,T;W;l(.Q)) is radially
continuous, strictly monotone, and there exists the inverse operator
T (O,T;W;(Q)j - L, (0.7:73(2)),

whereas (L‘lf)(t) =L"'(¢) f(¢) for V¢€[0,T] and Vf €L, (O,T;W{1 (.(2))

From Lemma 4 and Theorem 2.4 (see [3]) it immediately follows
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Theorem 3. Let the functions b,(¢,x,&) and a,(t,x,&) (i=12,...,n)

satisfy the conditions 1)—4). Then the problem (1)—(3), where the operators L
and M are defined by formulas (9) and (10), has a unique solution, and

L(u)eC(0,T;5(2)), %L(u) e L (0,7:5(2)).
Received 13.03.2009
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Uhwyjwy \npputhwui

Bqpujhtt pinhp yulnnuuwpupnjuliubt hajuuwpoudtph hudwp

Uojmunuiipnmid nuunmdtuuhpymud £ Unpnjih hwuwuwpnudbph inhugh
hwjwuwpnidutph dh quup hwdwp hbnbyw) uqpujuv-tqpuyht punhpp.

agL(u(t,x))-t-M(u(t,x))=f(t,x), t>0, x=(x1,...,xn)e.QcRn,
t

ul 00 = 0,
(Lu)(0.x) =g(x),  xeQ,
npukn L-p b M -p 2-py Yupgh nhdbpkughw) oybpuwwnnpubp ke Uyw-gnigynid

£, np npnpwlh  wuwydwiubkph phuypmid  hwdwywwnwuppwt  $nibughnbuyg
nwpwdnipjntumd wyn fuinhpt nith pusmd b wyt i dhwlyp:

Cuapam I'ap6anuan
KpaeBas 3agaya ais InceBaonapado/iMyecKuX ypaBHEeHMId

B pabore wuccnenyercs HavanbHO-KpaeBas 3ajada JAJisl YpaBHEHHS THIIA
CoboneBa

agL(u(t,x)) +Mu(t,x)) = f(t,x), t>0, x=(x,....,x,)e2C Rn,
t

”la_Q =0,

(Lu)(O,x) =g(x), xe,

rae L u M — muddeperunansHple onepaTopsl BTOporo mopsaka. Jlokaspiaercs,
YTO €CIU YIOBIIETBOPSAIOTCS HEKOTOPBIE YCIIOBHSA, TO 3Ta 3a/la4a B COOTBETCTBYIO-
meM (yHKIIHOHAJILHOM MPOCTPAHCTBE UMEET €ANHCTBEHHOE pelleHHe



