Physical and Mathematical Sciences

2010, № 1, p. 16–21

Mathematics

BOUNDARY VALUE PROBLEM FOR THE PSEUDOPARABOLIC EQUATIONS

SIAVASH GHORBANIAN*

Azad-University of Firizku, Iran

In the present paper the boundary value problem for the Sobolev type equation

$$\begin{cases} \frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), & t > 0, \ x = (x_1, ..., x_n) \in \Omega \subset \mathbb{R}^n, \\ u|_{\partial\Omega} = 0, \\ (Lu)(0,x) = g(x), & x \in \Omega, \end{cases}$$

is considered, where L and M are second-order differential operators. It is proved that under some conditions this problem in the corresponding space has the unique solution.

Keywords: Sobolev type equations, pseudoparabolic equations, monotone and radial operators.

1. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with the smooth boundary Γ . We consider the following boundary value problem:

$$\left\{ \frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), \quad t > 0, \ x = (x_1, ..., x_n) \in \Omega \subset \mathbb{R}^n, \right. \tag{1}$$

$$\left\{ u \right|_{\partial \Omega} = 0, \tag{2}$$

$$(Lu)(0,x) = g(x), \qquad x \in \Omega, \tag{3}$$

where
$$L(u) = -\sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_i} \left(b_{ij}(t,x) \frac{\partial u}{\partial x_j} \right), M(u) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right),$$

$$f(t,x) \in L_2((0,T);W_2^{-1}(\Omega)), g(x) \in W_2^{-1}(\Omega).$$

We suppose that the functions $b_{ij}(t,x)$ and $a_{ij}(t,x)$ (i,j=1,2,...,n) are defined in $[0,T] \times \overline{\Omega}$, $b_{ij}(t,x) = b_{ji}(t,x)$, $a_{ij}(t,x) = a_{ji}(t,x)$ (i,j=1,2,...,n) and

-

^{*} E-mail: siavash-ghorbanian@yahoo.com

for every $t \in [0,T]$ and $x \in \overline{\Omega}$ the following quadratic form is positively defined:

$$\sum_{i,j=1}^{n} b_{ij}(t,x) \xi_{i} \xi_{j} \ge c_{0} |\xi|^{2}, \qquad (4)$$

where $\xi = (\xi_1, ..., \xi_n)$, $c_0 = const > 0$.

The case of the problem (1)–(3) with $u|_{t=0} = g(x)$, instead of (3) (first boundary value problem), has been considered by R.A. Aleksandrian [1], G.S. Hakobyan, R.L. Shakhbaghyan [2], Kh. Gaevskii, K. Greger, K. Zakharis [3], R.E. Showalter [4], H.A.Mamikonyan [5] etc.

In this paper we study a new boundary value problem.

For the fixed $t \in [0,T]$ we define mappings L(t) and M(t) from $W_2^1(\Omega)$ to $W_2^{-1}(\Omega)$ by formulas

$$\langle L(t)v, w \rangle = \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t,x) \frac{\partial v}{\partial x_{i}} \cdot \frac{\partial w}{\partial x_{j}} dx$$
, (5)

$$\langle M(t)v,w\rangle = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(t,x) \frac{\partial v}{\partial x_{i}} \cdot \frac{\partial w}{\partial x_{j}} dx,$$
 (6)

where $v \in \mathring{W}_{2}^{1}(\Omega)$ and $w \in \mathring{W}_{2}^{1}(\Omega)$. It is easy to see that for $\forall v \in \mathring{W}_{2}^{1}(\Omega)$ formulas (5) and (6) define linear bounded functionals L(t)v and M(t)v, which belong to $W_{2}^{-1}(\Omega)$. At the same time differential expressions L(u) and M(u) generate operators (Lu)(t) = L(t)u(t,x) and (Mu)(t) = M(t)u(t,x) that map $L_{2}\left(0,T;\mathring{W}_{2}^{1}(\Omega)\right)$ into $L_{2}\left(0,T;\mathring{W}_{2}^{-1}(\Omega)\right)$.

Let's give some definitions (see [3, 4]). Let X be a real, reflexive Banach space.

Definition 1. The operator $A: X \to X^*$ is called

- radially continuous, if for $\forall x, y \in X$ the function $\varphi(s) = \langle A(x+sy), y \rangle$ is continuous in [0,1];
 - Lipschitz-continuous, if there exists a positive constant M such that

$$||Ax - Ay||_{*} \le M ||x - y|| \text{ for } \forall x, y \in X;$$

- monotone, if $\langle Ax Ay, x y \rangle \ge 0$ for $\forall x, y \in X$;
- strictly monotone, if there exists a positive constant m such that

$$\langle Ax - Ay, x - y \rangle \ge m ||x - y||^2$$
 for $\forall x, y \in X$.

Lemma 1. The operators L(t), M(t): $\overset{\circ}{W}_{2}^{1}(\Omega) \rightarrow W_{2}^{-1}(\Omega) = \left(\overset{\circ}{W}_{2}^{1}(\Omega)\right)^{*}$ are radially continuous and uniformly bounded with respect to t.

Proof. Indeed, for every functions $v(x), w(x) \in W_2^1(\Omega)$ we have

$$\varphi(s) = \langle L(t)(v+sw), w \rangle = \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t,x) \frac{\partial(v+sw)}{\partial x_{i}} \cdot \frac{\partial w}{\partial x_{j}} dx =$$

$$= \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t,x) \frac{\partial v}{\partial x_{i}} \cdot \frac{\partial w}{\partial x_{j}} dx + s \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t,x) \frac{\partial w}{\partial x_{i}} \cdot \frac{\partial w}{\partial x_{j}} dx = \langle L(t) v, w \rangle + s \langle L(t) w, w \rangle.$$

Similarly, we get $\varphi(s) = \langle M(t)(v+sw), w \rangle = \langle M(t)v, w \rangle + s \langle M(t)w, w \rangle$, hence the functionals $\varphi(s)$ and $\psi(s)$ are linear. From the formulas (5) and (6) it follows that

$$\left| \left\langle L(t)v, w \right\rangle \right| = \left| \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t,x) \frac{\partial v}{\partial x_{i}} \cdot \frac{\partial w}{\partial x_{j}} dx \right| \leq$$

$$\leq \sum_{i,j=1}^{n} \int_{\Omega} \left| b_{ij}(t,x) \right| \left| \frac{\partial v}{\partial x_{i}} \right| \left| \frac{\partial w}{\partial x_{i}} \right| dx \leq c_{1} \|v\|_{\mathring{W}_{2}(\Omega)}^{\circ} \cdot \|w\|_{\mathring{W}_{2}(\Omega)}^{\circ},$$

hence we have $\|L(t)v\|_* \le c_1 \|v\|_{\mathring{W}_{\frac{1}{2}}}$, $\|M(t)v\|_* \le c_1 \|v\|_{\mathring{W}_{\frac{1}{2}}}$. Now the Lipschitz continuity of the operators L(t) and M(t) follows from their linearity.

Lemma 2. The operators L(t) are uniformly strictly monotone with respect to t.

Proof. From condition (4) it follows that for every $v(x), w(x) \in \overset{\circ}{W}^{1}_{2}(\Omega)$ we have

$$\begin{split} \left| \left\langle L(t)v - L(t)w, v - w \right\rangle \right| &= \left\langle L(t)(v - w), v - w \right\rangle = \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t, x) \frac{\partial (v - w)}{\partial x_{i}} \cdot \frac{\partial (v - w)}{\partial x_{j}} dx \geq \\ &\geq c_{0} \int_{\Omega} \sum_{i,j=1}^{n} \left| \frac{\partial (v - w)}{\partial x_{i}} \right|^{2} dx = c_{0} \left\| v - w \right\|_{\dot{W}_{2}^{1}(\Omega)}^{2}. \end{split}$$

Definition 2. Let X and Y be linear spaces and s = [0,T]. A mapping $G: L_2(0,T;X) \to L_2(0,T;Y)$ is called Volterra-type, if from the condition u(s) = v(s) for almost all $s \in [0,t]$, $t \in S$, it follows that (Gu)(s) = (Gv)(s) for almost all $s \in [0,t]$. It is evident that the operator M is of Volterra-type.

From the Lemma 1, Lemma 2 and Lemma 2.2 (see [1]) we get

Theorem 1. The operator
$$L: L_2\left(0,T; \overset{\circ}{W}_2^1(\Omega)\right) \to L_2\left(0,T; W_2^{-1}(\Omega)\right)$$
 is

radially continuous, strictly monotone, and there exists the inverse operator L^{-1} , which is Lipschitz continuous and

$$\left(L^{-1}f\right)(t) = L^{-1}(t)f(t) \quad \forall t \in [0,T], \quad \forall f \in L_2(0,T;W_2^{-1}(\Omega)).$$

Together with the problem (1)–(3), let's consider the following one

$$\begin{cases} v' + \mathbb{A}v = f, \\ v(0) = g, \end{cases}$$
 (7)

where $\mathbb{A} = ML^{-1}: L_2\left(0,T;W_2^{-1}(\Omega)\right) \to L_2\left(0,T;W_2^{-1}(\Omega)\right)$. Since the operator \mathbb{A} satisfies the conditions of Theorem 1.3 (see [3]), we conclude that the problem (7) has the unique solution. Denote it by v_* . Then the function $v_* = L^{-1}v_-$ is the solution of the problem (1)–(3). Thus, we can formulate the following (see Theorem 2.4, [3])

Theorem 2. Let the functions $b_{ij}(t,x) = b_{ji}(t,x)$, $a_{ij}(t,x) = a_{ji}(t,x)$ (i,j=1,2,...,n) be continuous in the domain $[0,T] \times \Omega$, and condition (4) holds for any $t \in [0,T]$ and any $x \in \overline{\Omega}$. Then the problem (1)–(3) has a unique solution and $L(u) \in C(0,T;W_2^{-1}(\Omega))$, $\frac{\partial}{\partial t}(L(u)) \in L_2(0,T;W_2^{-1}(\Omega))$.

2. Now we consider the problem (1)–(3) with the assumption that the operators L and M are second order nonlinear differential operators:

$$L(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (b_{i}(t, x, \nabla u)), \quad M(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (a_{i}(t, x, \nabla u)),$$

where the functions $b_i(t,x,\xi_1,...,\xi_n)$, $a_i(t,x,\xi_1,...,\xi_n)$ are defined and continuous in $[0,T] \times \overline{\Omega} \times \mathbb{R}^n$, and have continuous derivatives with respect to ξ_j (j=1,2,...,n).

We suppose that the functions $b_i(t,x,\xi)$ and $a_i(t,x,\xi)$ ($\xi = (\xi_1,...,\xi_n)$, i = 1,2,...,n) satisfy the conditions:

1)
$$|b_i(t,x,\xi)| \le c_1(|\xi|+1)$$
, $c_1 = const > 0$, $i = 1,2,...,n$,

2)
$$\left| b_{ij} \left(t, x, \xi \right) \right| = \left| \frac{\partial b_1}{\partial \xi_j} \right| \le c_2$$
, $c_2 = const > 0$, $i, j = 1, 2, ..., n$,

3)
$$\sum_{i,j=1}^{n} b_{ij}(t,x,\xi)\eta_{1}\eta_{2} \geq c_{3}|\eta|^{2} \quad \forall t \in [0,T], \ \forall x \in \overline{\Omega} \text{ and } \forall \eta = (\eta_{1},...,\eta_{n}) \in \mathbb{R}^{n},$$

4)
$$\left|a_i(t,x,\xi)\right| \le c_4(\left|\xi\right|+1), \left|\frac{\partial a_i(t,x,\xi)}{\partial \xi_j}\right| \le c_5, \quad i,j=1,2,...,n.$$

For fixed $t \in [0,T]$ define the operators L(t) and M(t) from $\overset{\circ}{W}_{2}^{1}(\Omega)$ to $W_{2}^{-1}(\Omega)$ by formulas

$$\langle L(t)v, w \rangle = \sum_{i=1}^{n} \int_{\Omega} b_{i}(t, x, \nabla u) \frac{\partial w}{\partial x_{i}} dx$$
, (7)

$$\langle M(t)v,w\rangle = \sum_{i=1}^{n} \int_{\Omega} a_i(t,x,\nabla u) \frac{\partial w}{\partial x_i} dx$$
 (8)

Operators L(t) and M(t) $(t \in [0,T])$ generate mappings L and M from $L_2\Big(0,T; \overset{\circ}{W}_2^1(\Omega)\Big)$ to $L_2\Big(0,T; W_2^{-1}(\Omega)\Big)$ by formulas

$$(Lu)(t) = L(t)(u(t,x)), \tag{9}$$

$$(Mu)(t) = M(t)(u(t,x)).$$
(10)

Lemma 3 ([5]). Let the conditions 1)–3) hold. Then the operator L(t) is radially continuous and strictly monotone.

Proof. For every $s_1, s_2 \in [0,1]$ we have

$$\begin{split} \left| \varphi \left(s_{1} \right) - \varphi \left(s_{2} \right) \right| &= \left| \left\langle L \left(t \right) \left(u_{1} + s_{1} v \right), v \right\rangle - \left\langle L \left(t \right) \left(u_{2} + s_{2} v \right), v \right\rangle \right| = \\ &= \left| \left\langle L \left(t \right) \left(u + s_{1} v \right) - L \left(t \right) \left(u + s_{2} v \right), v \right\rangle \right| = \\ &= \left| \sum_{i=1}^{n} \int_{\Omega} b_{i} \left(t, x, \nabla u + s_{1} \nabla v \right) - b_{i} \left(t, x, \nabla u + s_{2} \nabla v \right) \frac{\partial v}{\partial x_{i}} dx \right| = \\ &= \left| \sum_{i=1}^{n} \int_{\Omega} \int_{\Omega} \left(\sum_{j=1}^{n} \frac{\partial b_{i} \left(t, x, \nabla u + s_{1} \nabla v + \tau \left(s_{2} - s_{1} \right) \nabla v \right)}{\partial \xi_{j}} \left(s_{2} - s_{1} \right) \frac{\partial v}{\partial x_{i}} \cdot \frac{\partial v}{\partial x_{j}} \right) dt dx \right| \leq C \left| s_{1} - s_{2} \right| \left\| v \right\|_{W_{2}^{1}(\Omega)}^{2}, \end{split}$$

thus, the operator L(t) is radially continuous.

Now we prove that the operator L(t) is strictly monotone. Indeed, from the condition 3) we get

$$\sum_{i=1}^{n} \int_{\Omega} \left[b_{i}(t, x, \nabla u) - b_{i}(t, x, \nabla v) \right] \frac{\partial (u - v)}{\partial x_{i}} dx =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{\Omega} b_{ij}(t, x, \nabla v + \tau (\nabla u - \nabla v)) \frac{\partial (u - v)}{\partial x_{i}} \cdot \frac{\partial (u - v)}{\partial x_{j}} dt dx \ge c_{3} \|u - v\|_{\mathring{W}_{2}(\Omega)}^{2}.$$

The proof of Lemma 3 is complete.

It is easy to verify that the operator

$$M: L_2\left(0,T; \mathring{W}_2^1(\Omega)\right) \rightarrow L_2\left(0,T; W_2^{-1}(\Omega)\right)$$

is Lipschitz continuous and of Voltera type. From Lemma 2 and Lemma 2.2 (see [3]) it immediately follows

Lemma 4. The operator $L: L_2\left(0,T; \overset{\circ}{W}_2^1(\Omega)\right) \to L_2\left(0,T; W_2^{-1}(\Omega)\right)$ is radially

continuous, strictly monotone, and there exists the inverse operator

$$L^{-1}: L_2\left(0,T; \overset{\circ}{W}_2^1(\Omega)\right) \rightarrow L_2\left(0,T; W_2^{-1}(\Omega)\right),$$

whereas $(L^{-1}f)(t) = L^{-1}(t)f(t)$ for $\forall t \in [0,T]$ and $\forall f \in L_2(0,T;W_2^{-1}(\Omega))$.

From Lemma 4 and Theorem 2.4 (see [3]) it immediately follows

Theorem 3. Let the functions $b_i(t,x,\xi)$ and $a_i(t,x,\xi)$ (i=1,2,...,n) satisfy the conditions 1)-4). Then the problem (1)-(3), where the operators L and M are defined by formulas (9) and (10), has a unique solution, and $L(u) \in C(0,T;W_2^{-1}(\Omega))$, $\frac{\partial}{\partial t}L(u) \in L_2(0,T;W_2^{-1}(\Omega))$.

Received 13.03.2009

REFERENCES

- 1. **Aleksandrian R.A.** Trudy MMO, 1960, v. 9, p. 455–505 (in Russian).
- 2. **Hakobyan G.S., Shakhbaghyan R.L.** Izv. NAN Armenii. Matematika (Journal of contemporary Mathematical Analysis), 1995, v. 30, № 1, p. 5–29 (in Russian).
- 3. **Showalter R.E.** Mathematical Surveys and Monographs, 1997, v. 49.
- Gaevskii Kh., Greger K., Zakharis K. Nonlinear Operator Equations and Operator Differential Equations. M.: Mir, 1978 (in Russian).
- 5. **Mamikonyan H.A.** Uchenie zapiski EGU, 2006, № 2, p. 33–40 (in Russian).

Սիավաշ Ղորբանիան

Եզրային խնդիր պսևդոպարաբոլական հավասարումների համար

Աշխատանքում ուսումնասիրվում է Սոբոլևի հավասարումների տիպի հավասարումների մի դասի համար հետևյալ սկզբնական-եզրային խնդիրը.

$$\begin{cases} \frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), & t > 0, \ x = (x_1, \dots, x_n) \in \Omega \subset \mathbb{R}^n, \\ u|_{\partial \Omega} = 0, \\ (Lu)(0,x) = g(x), & x \in \Omega, \end{cases}$$

որտեղ L-ը և M-ը 2-րդ կարգի դիֆերենցիալ օպերատորներ են։ Ապա-ցուցվում է, որ որոշակի պայմանների դեպքում համապատասխան ֆունցիոնալ տարածությունում այդ խնդիրն ունի լուծում և այն էլ միակը։

Сиаваш Гарбаниан Краевая задача для псевдопараболических уравнений

В работе исследуется начально-краевая задача для уравнения типа Соболева

$$\begin{cases} \frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), & t > 0, \ x = (x_1, \dots, x_n) \in \Omega \subset \mathbb{R}^n, \\ u|_{\partial \Omega} = 0, \\ (Lu)(0,x) = g(x), & x \in \Omega, \end{cases}$$

где L и M — дифференциальные операторы второго порядка. Доказывается, что если удовлетворяются некоторые условия, то эта задача в соответствующем функциональном пространстве имеет единственное решение