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BUCKLING OF ISOTROPIC PLATES WITH TWO OPPOSITE SIMPLY
SUPPORTED EDGES AND THE OTHER TWO EDGES ROTATIONALLY
RESTRAINED UNLOADED

R. SHARIFIAN"

Chair of Mechanics, YSU

The paper presents buckling loads of isotropic rectangular plates with two
simply supported opposite edges and the other two edges elastically supported
against rotation. An analytical method that uses the Lévy solution method is
employed to determine the buckling loads of the mentioned rectangular plates.
The convergence and comparison of the results with those available in the literatu-
re indicate the accuracy and the validity of the proposed technique. Effects of the
elastic restraint parameters on the mode shapes are illustrated in graphic forms.
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Introduction. Plates of different shapes with different boundary conditions
having various applied in-plane force distributions, as well as different buckling
factors are considered and documented in [1-4]. Buckling of isotropic plate is
discussed in numerous classical monographs. Solution procedures, development of
characteristic equations and graphical presentation of buckling curves in terms of
dimensionless buckling coefficient and edge restraint coefficient, are well known.
Effect of the rotational restraint on the buckling load is thoroughly studied in
literature as well. This paper follows the previous papers and presents in standard
form parametric information on buckling.

Analysis. Consider the equation governing buckling deflection w (stability
equation) for a rectangular isotropic plate, subjected to distributed compressive
load P along the x-axis. The rectangular plate simply supported along the edges

x=0 and x =a, and elastically supported against rotation along the other edges is
shown in Fig. 1.

w
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The boundary conditions on the rotationally restrained edges at y =+0,5b are

w, +—Lw =0,
» 7 at y==0,5b.
w=0
ER’

12(1-v?)

Young’s modulus, v is the Poisson’s ratio, w is the deflection, A is the Laplace

operator, and K is the restraining moment along the rotationally restrained edge

Here D is a flexural stiffness, defined as D= , where E is the

per unit length and per unit rotation [5]. The dimensionless coefficient of rotational
restraint R (alternatively identified as ¢ in the literature) can be defined as

K . . o .
R= DRb , where b is the plate’s width. The boundary condition on the restrained

edges can then be written as

MR at y=20,50, (3)
w=0
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Fig. 1. Uniformly compressed rectangular plate simply supported along the edges x=0 and x=a,
and elastically supported against rotation along the other edges (SSEE plate).

The solution to (1) is chosen in a form that satisfies (2)
> . mm mrn
W)= fu (y)Sln(Tx), M === “
m=1
The function f, (y) is the eigenfunction, corresponding to the least

eigenvalue (which is to be determined), represents the buckling shape along
the y-axis. m represents the number of half-waves in the direction x. Substituting

(4) into (1), we find for f, () the following linear ordinary differential equation:



34 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, Ne 1, p. 32-36.

4 2
ddy]:’” -2u,’ ddng’” J{#,,f —gumz}fm =0. (5)
Substituting (4) into (3), we obtain
Chy R Ay
&' b dy L at y==0,5. (6)
f=0
The form of the solution to (5) depends on the nature of the roots A of the

equation A= 2ym222 + |:/1m4 _gﬂmz } =0.

. P o
Assuming that D >u,” , the general solution is

f,(»)=C cosh A y+C,sinh A4 y+C,cosd,y+C,sind,y, (7)

O N R A IR ®)

Since the deflection w at the buckling load must be a symmetric function of
v, in the right hand side of (7) there remain only the first and the third terms. Thus,

1, (»)=C coshA y+C,cosi,y, 9

and the general mode shape is given by w(x, y) =Y (C, cosh 4,y +C, cos 4, y)sin(u,,x).

m=l1
The unknown constants C, and C; are determined from the edge conditions
at y==0,5b. Substituting (9) into (6) and considering w =0 at y=20,5b,
a set of simultaneous equations with regard to C; and C, is obtained:

|:A11 4, HCI } ~0
4, Ay |G '

Here 4, = A" cosh(4,b/2)+(R/b)A, sinh(4b/2), A,=-A"cos(,b/2)—
—(R/b)A,sin(A,b/2), A, =cosh(Lb/2), A, =cos(A,b/2).

The condition A =0 yields the following characteristic buckling equation:

A=A, 4y) = A4, =0,

212 cos(Ab / 2)cosh(A4b /2)+ (R /b)A cos(A,b/2)sinh(4b/2) +

+2,7 cosh(4,b/ 2)cos(A,b / 2) + (R / b)A, cosh(A,b / 2)sin(A,b / 2) = 0.

Since A and A, contain P (8), (10) can be solved, using an iterative

where

(10)

scheme, for the smallest P, denoted by P, , once the geometric and material

parameters of the plate are known. The critical buckling may be written as
2

P, :kg, where k£ is a numerical factor (buckling coefficient), depending on
b

the plate aspect ratio and material properties.
The transcendental equation is solved to determine the buckling coefficient, £,
as a function of plate properties, the value of the edge restraint coefficient R, the
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plate aspect ratio @ /b and the mode number m . The buckling mode is given by
the mode number, for which the smallest & is obtained for a given set of parameters.

Results and Discussion. Matlab program was written to perform the
parametric studies reported below. Parametric studies were performed to
investigate the influence of material properties, rotational restraint and mode
number on the buckling characteristics of this plate. Buckling load P was obtained
for different coefficients of rotational restraint values as a function of the plate
aspect ratio a/b . Buckling curves are shown in Fig. 2. Due to the fact that the
rotational restraint is a variable parameter R =0, 4, 10, 30, 10000, R=0
corresponds to a simple support, and R=c corresponds to a clamped support.
Intermediate values of R imply partial rotational restraint. In the numerical studies
R =10000 was taken to represent R=o0 [4, 5].
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Fig. 2. Non-dimensional buckling loads, P = Pb* / z°D , versus plate aspect ratio a /b :
a) R=0; b)R=4; ¢) R=10; d)R=30; ¢) R=10,000; f)0<R<10,000.
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Conclusions. Buckling of an isotropic plate, free supported on its loaded
edges, and rotationally restrained on its unloaded edges has been considered in this
paper. The correct form of the characteristic transcendental equation for this
buckling problem has been provided. Parametric studies have been conducted and
buckling curves have been presented.

e R=10000=c. The minimum value of the buckling load P = 6,976
occurs at a/b=0,665. There is a mode change at a/b=0,936 from m=1to
m =2, the buckling load for this aspect ratio is P =8,095, and the minimum

buckling load P =6,976 for mode m=2 occurs at a/b=1,329. These results
corresponds to a clamped support [4].

e R=0. For this case the minimum value of the buckling load P =4,008
occurs at a /b =1. The result corresponds to exact a simply support [4].

e 0<R<10000. The other buckling curves are between two sets of the
mentioned buckling load.
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r. Tuphdhwn

Pgnuipny uw) bph uynitnipiu Ynpniunp, tpp uwgh Eplynt §andbpp wmqun
htugus &, hul Uyniu Eplniup wdpuljgws b wnwdquijutt hnpuljuung

Uhkpuyugynid ki Juyniunipjut Ynpunh Yphnhulub pinubkpp hgnunpny
nunuiblnit vwbph hwdwp, tpp vwh Epynt Ynnudbpp wquun hkidus ki, huly
Uniu  bpiniut wdpuljgws B wpwdqulub  hnpulwwny: Yhpundmd k
Jipndwub tnwiwl]” hhduqwé Lhdhh wpliwwnwiph Jpu: Yuwunwpduws ku
hwdbdwwnnipniuitp qpuijutnipniithg huynih dwubwynp pbwpbph hbwn:
Munidtwuhpdws b Yphnpluljut  phinh  juppdwsénipnitt  wnrwdquljub

hnnujuwh pinpugnphsubphg:

P. lllapudnan.

YcToiiYMBOCTL H30TPONHBIX IJIACTUH B cJIyYae, KOI/ia IBe
NPOTUBOMNOJIOKHbIE CTOPOHBI INIACTHHBI CBOOOIHO ONIEPThI, a iBe Apyrue
3aKpeIlieHbl IOCPeJCTBOM YIPYIOro HapHUpa.

C mnomoIpio aHAJIUTHYECKOTO Meroaa JIeBu ompeneneHbl KpUTHUYECKHE
Harpy3kl TIIOTEpH YCTOMUMBOCTH TPSMOYIOJbHBIX IUIACTHH, KOIZAa JBE
MPOTHUBOIOJIOKHBIE CTOPOHBI IJIACTHHBI CBOOOIHO OMEPThI, a JIBe JApyrue
3aKpEIUIEHbl ~ IIOCPEJICTBOM  YyNpyroro ImapHupa. M3ydeHa 3aBHCHMOCTb
KPUTUYECKHUX HArpy30K OT IapaMeTpoB YIPYyroro 3akpersieHus. [[ns yacTHBIX
CJIy4aeB YCTaHOBJIEHO COOTBETCTBHE C U3BECTHBIMU U3 JINTEPATYPH! pe3ybTaTaMu.



