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In this paper the polymorphic lambda terms are considered, where no type
information is provided for the variables. The aim of this work is to prove that
presented typification algorithm [1] typifies such terms in most common way.
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1. Introduction. Types are used in programming languages to analyze
programs without executing them, for purposes such as detecting programming
errors earlier, for doing optimizations etc. In some programming languages no
explicit type information is provided by the programmer, hence some system of
type inference is required to recover the lost information and do compile time type
checking. One of such type inference systems is the well known Hindley/Milner
system [2], used in languages such as Haskell, SML, OCaml etc. An important
property of the type systems is the property of principal typings [3, 4], which
allows the compiler to do compositional analysis, i.e. analysis of modules in ab-
sence of information about other modules [3, 4]. Unfortunately the Hindley/Milner
system doesn't support the property of principal typings [3]. This paper is the
continuation of [1], in which we consider the extension of the type inference
system called System E. In section 2 we prove that the type inference algorithm
returns the principal typing of a term.

2. Principal Typing of a Term.

2.1. Preliminary Definitions and Facts. Before proving that the type
inference algorithm returns the principal typing of a term let us present some
definitions and facts.

Definition 2.1. Let Q,,0, € Skeleton. O, and Q, are equivalent, written
0 ~0,, iff term(Q)=term(Q,), typing(Q)=typing(Q,), constraint(Q,)=
=constraint(Q;). In other words, (Q~=0Q,, iff the judgements

Mv>Q):(AF7)/A and (M > Q,):(AF7)/ A are both inferable or not inferable.
Lemma 2.1. The following skeletons are equivalent:

L (@O N(Q,nO))=(QNnO)ND5);2. (0 n0,)=(0,N0);
3. (0" NQ)=0; 4. e(Q N0, =(eQ, NeD,); 5. eo™ =",
where 0,,0,,0; € Skeleton and M € Term and e e ExpansionVariable.
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Let us consider the judgement (M >(Q):(A4AF7)/A that is inferable. In

many cases we will consider the maximal subtrees of the inference tree of that
judgement that have root node corresponding to one of the following type inference
rules: [VAR], [CONST], [OMEGA], [ABS] and [APP].

Lemma 2.2. Let (M >Q):(AF7)/A be an inferable judgement. Then

there exist E-paths e,...,e/, environments 4,,...,4 0,....,0, € Skeleton
Ty,...,T, €Type and A,,...,A € Constraint, n>1, such that Q~eQ N...Ne 0, ,
A=el4 N...ne A4,
M>0):(4 7))/ A, i=l,...,n, are inferable, and in the last step of inference of
that judgements one of the following rules is used: [VAR], [CONST], [OMEGA],
[ABS] and [APP].

A free occurrence of the subskeleton x* in skeleton Q is defined in a

no

=T, N...NeT,, A=eA;N...Ne/A and judgements

n-n?

conventional way, i.e. the occurrence of the subskeleton x* in skeleton Q is

called free, if it doesn’t fall within the scope of a lambda that uses variable x,
otherwise, the occurrence is called bounded. It is easy to see, that if the skeleton
Q' is obtained from the skeleton O by renaming some term variables, then

O ~(Q'. Let us introduce the following notations:

1. We denote by 0(Q,....,0,), n>0, the skeleton O, in which mutually
different subskeletons Q,,...,0, are considered.

2. We denote by Q(Q1 =0,....0, = Q,;), n>0, those skeletons that are
obtained from the skeleton Q(Ql,...,Qn> through substituting the subskeletons
0,....,0, by 0,...,0! respectively. The substitution mentioned above is called
canonical, iff all free occurrences of subskeletons in O, are also free in
Q(Ql,...,Qn>, and all free occurrences of subskeletons in O are also free in

Q(Q1 =0,...0, = Q;), i=1,...,n . Henceforth only canonical substitutions of
skeletons will be considered.
Definition 2.2. Let Q(Q') € Skeleton . Then the E-Path of the skeleton Q' in

0, written as E-Path (Q(Q')) , is calculated as follows:

1.If 0=0Q', then E-Path (0(Q'))=¢ ;

2. If O=eQ,, and Q' is a subskeleton of Q,, then E-Path (Q(Q')) =
=eE-Path (Q1 <Q'>) , where Q, € Skeleton and e e ExpansionVariable

3. If O=(Ax.Q,), and Q' is a subskeleton of Q,, then E-Path (Q(Q'>)=
=E-Path (Q1 <Q'>) , where O, € Skeleton and x € TermVariable ;

4.1f 0=(0,"0Q,), and Q' is a subskeleton of Q,, then E-Path (Q(Q')) =
=E-Path (Q1 <Q'>) , where Q,,0, € Skeleton ;

5. If Q=(Q1 ﬁQz) ,and Q' is a subskeleton of Q,, then E-Path (Q(Q')) =
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=E-Path (Q2 <Q'>) , where Q,,0, € Skeleton ;

6.1f 0=(0,0,)", and Q' is a subskeleton of O, then E-Path(Q{0Q'))=
=FE-Path (Q1 <Q'>) , where Q,,0, € Skeleton and t € Type;

7.1f 0=(0,0,)",and Q' is a subskeleton of Q,, then E-Path(Q{0Q'))=

=E-Path (Q2 <Q'>) , where Q,,0, € Skeleton and 7 € Type.

Let us present some simple propositions without proof.
Proposition 2.1. Let Qe Skeleton and type(Q)=é1,N...Nér,, n=1,

where 7,,...,7, € Type and é,,...,€, are E-Paths. Then 30,,...,0, € Skeleton such
that O~€e0 N...Nne 0, and Hpe(Q)=7,, i=l,...,n.

Proposition 2.2. Let Q(Ql,. ..,Qn> € Skeleton, n>0, and
0,,...,0 € Skeleton.  Then if  type(O,)=type(O;) Vvi=l,...,n, then
pe(Q(Q,....0,))=twe(0(0,=0).....0, = 0,)).

Proposition 2.3. Let Q<x:r1 X > € Skeleton and only subskeletons

I‘L'l

T .
x'!,..,x" have free occurrence in Q and Q,...,Q, € Skeleton, where

x € TermVariable and rt,,...,t, € Type, n>0. Then if term(Q<x:r1,...,x:r" >):M1

and term(Q,)=M, Vi=l,...,n, then term(Q<x:rl = Ql,...,x:r" = Qn>) =
=M[x=M,].
Proposition 2.4. Let Q<xzr > € Skeleton and Q' e Skeleton and type(Q')=t,

where teType and xeTermVariable. Then constraint(Q<x:r = Q'>)=

=constraint(Q<x’>) N E-Path (Q<x”>)constraint 0).

Let us consider the term M ¢ B-NF and one step of [ -reduction:
M —, M'. Now we are going to show that if (4F7) is a typing of term M , then
it is also a typing of term M'.

Lemma 2.3. Let Q<x2r1 ,...,x:r" > € Skeleton and only subskeletons

I‘L'l

xT,...,x™ have free occurrence in Q and €= E-Path (Q<x:r">), i=1,...,n , where

7,,...,T7, € Type and x € TermVariable , n > 0. Then env(Q)(x)=ér, N...NET, .
Proof. By induction on form of skeleton Q.
1. Let O=w", where M e Term . We must show that env(Q)(x)= . By the
rule [OMEGA], env(Q)=env, = env(Q)(x) = .

2. Let Q=c", where ceConstant and 7eType. We must show that
env(Q)(x) = . By the rule [CONST], env(Q)=env, = env(Q)(x)=w.
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3. Let O=y", where x# y e TermVariable and t € Type. We must show
that env(Q)(x) = . By the rule [VAR], env(Q)=env [y > t]= env(Q)(x)=w .

4. Let O=x", where 7 € Type. We must show that env(Q)(x)=7 . By the
rule [VAR], env(Q)=env [x > t]=env(Q)(x)=T .

5. Let Q=eQ', where ec ExpansionVariable and Q'€ Skeleton.

Assume that only subskeletons x™,...,x™ have free occurrence in Q' and
é;=E-Path(Q'<x”i>), where i=1,...,n, n>0. We must show that env(Q)(x)=

=¢1,M...N¢r,. By induction hypothesis, env(Q')(x)=€1r, N...Néz,. By
the rule [E-VAR], env(Q)=eenv(Q") = env(Q)(x)=eenv(Q')(x)=e(é/t, N

.NerT )=erT, N...Ner,.
6. Let O=(1y.Q"), where yeTermVariable and Qe Skeleton.

Assume that only subskeletons x"/,...,x™ have free occurrence in Q' and
é;=E-Path(Q'<x”i>), where i=1,...,n, n>0. We must show that emv(Q)(x)=

=¢r,N...Nné,r,. By induction hypothesis, env(Q')(x)=ér,N...Né€T,.
By the rule [ABS], env(Q)=env(Q)y— ®]= env(Q)(x)=env(Q')(x)=
=eT, N...NET =T, N...NET,.

7. Let O=(Ay.Q"), where Q'€ Skeleton. We must show that env(Q)(x)=®.
By the rule [ABS], env(Q) =env(Q")[x > 0] = env(Q )(x) = .

8. Let o= (Q1 NQ,), where Q,,0, € Skeleton. Assume that only sub-

!

skeletons x™,...,x™ have free occurrence in O, and only subskeletons x™,...,x™
have free occurrence in Q,, and €= E-Path (Q1 <x2r’t>), é''= E-Path (Q2< >),

where i=1,...,m, j=l,....,k and m,k>0. We must show that env(Q)(x) = €1/ N
.Neée 1 r\el"rl N...ner;. By induction hypothesis, env(Q)(x)=¢€"\7'\N
e’ t'and env(Q,))(x)=¢€T1'N...Nnéxr,. By the rule [INT], env(Q)=env(Q))
Nenv(Q,) = env(Q)(x) = env(Q, )(x) Nenv(Q,)(x) =T, N...NE T/ NeT N...NET].
9. Let 0=(Q,0,)", where Q,,0, € Skeleton and 7 € Type. Assume that only

Ty

subskeletons x™,...,x™ have free occurrence in 0,, only subskeletons X x
have free occurrence in Q,, é=E-Path (Ql<xzft[>) and é'= E-Path (Qz <sz/' >j,

where i=l1,...,m, j=l,...,k and m,k>0. We must show that env(Q)(x)=¢€r; N
.Neé  Nner' N...ner, . By induction hypothesis, env(Q,)(x)=¢éz N...Ne€, 1|
and env(Q,)(x)=¢ér/N...ner;. By the rule [APP], env(Q)=env(Q)N
env(Q,) = env(Q)(x) = env(Q,)(x) Nenv(Q,)(x) = €1, N...NE, 7 NET/ N...NET].
Lemma 2.4. Let M|,M, eTerm and xeTermVariable. If (A7) is a
typing of term ((Ax.M,)M,), then it is also a typing of term M,[x=M,].
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Proof. Because (AFt) is a typing of term ((Ax.M,)M,), there
exist Qe Skeleton and AeConstraint such that the judgement
(Ax.M)M,)>0):(AF7)/A is inferable, and A is solved. There are three cases

to consider:
1 In the last step of inference of the judgement

(Ax.M)M,)>Q): (A7) /A the rule [OMEGA] is used. Then Q=q*""2),
(AF-7)=(env, Fw) and A=w . Because (env, - w) is a typing of any term, it is
also a typing of term M [x:=M,].

2. In the last step of inference of the judgement
(AxM)M,)>Q):(AF7)/A rule [APP] is used. Then O=(Q,0,)" and the
judgements (Ax.M)>Q):(4 F7)/A and (M, >0,):(4,F 7,)/ A, are infe-
rable, and 4=4, " 4, and =1, " 7,, and A=A, NA, " (tr, =(r, = 7)) (1). Becau-
se A issolved, (1) = 7,=(r, > 7) (2), and constraints A,,A, are solved. (2) =in
the last step of inference of the judgement ((Ax.M,)>Q,):(4, 17,)/A, the rule
[ABS] is used. Hence, O,=(1x.0Q") and the judgement (M, >Q"):(4'-1")/A" is
inferable, and 4=A[x > w] and 7,=(r, >7)=(4'(x) >7'), and A=A" (3).
(3)=>1,=4'(x) and 7=t', and constraint A’ is solved (4). Assume that only
subskeletons x™,...,x™, n>0, have free occurrence in Q'. By Lemma 2.3,
A =87/ N...0e1 (5), where él.=E—Path(Q’<x”§>), i=1,...n. (45>
= 1,=¢7,N ...Ne,T (6). By Proposition 2.1 and (6), O, =0/ N...Né O’ and
type(Q)=t!, i=l,....n (7). Let us consider the following skeleton:
Q"= Q'<x:"' =0, X" = Q,;> Now we will calculate fterm(Q"), env(Q"),
type(Q'") and constraint(Q'") .

2a. (1), (B)=term(Q") = term(Q'<xI",...,x”’;>) and  term(Q,) =M, .
(7) = term(Q,) =term(, 0/ N ...Neé 0" ) =term(Q")=...=term(Q!)=M,. Hence
by Proposition 2.3, term(Q")=M,[x:=M,] (8).

2b. Let us show that env(Q")(y)= A(y) VyeTermVariable such that

y+#x.By Lemma 2.3, A(y) depends on subskeletons of the form y”” that have
free occurrence in skeleton O=((Ax.0")0,), and their E-Paths in that skeleton and

env(Q")(y) depend on subskeletons of the form y* that have free occurrences in
skeleton Q"' = Q'<x”" =0,.. X = Q,;> and their E-Paths in that skeleton. Due to
(7, O=((Ax.0)E0 N...Nné O")). Hence, it is easy to see that the both skeletons
O and Q" have the same free occurrences of subskeletons of the form y'T” with
the same E-Path= env(Q"")(y)= A(y) (9). Now let us show that env(Q")(x)=
= A(x). Assume that there is no subskeleton of form x” that have free occurrence

in skeleton Q,, otherwise, we would rename the bound variable x in skeleton
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(Ax.0") . Hence, it is easy to see that both skeletons QO and Q" have no free

occurrences of subskeletons of form x° = env(Q")(x)=A(x)=w (10). (9), (10)
=env(Q")=4 (11).

2¢c. )= type(Q) = lype(Q'<x”",...,x”’§ >) =1'. By proposition 2.2, (4) and
(7), type(Q") = type(Q') =1' =7 = type(Q") =7 (12).

2d.  (1),(3)= constraint(Q,)=A, and constraint(Q")=A'=A,. (7)=
= constraint(Q,)=¢ constraint (Q))N...Né¢ constraint(Q)) (13). By Proposi-

tion 2.4, constraint(Q'")=constraint(Q") N E—Path(Q'<x"'>)constraint(Q1')m...

N E-Path (Q’ <)é r’; >) constraint(Q, y=constraint(Q') Né constraint(Q) M. .. "é constraint(Q))
(14). (13), (14)= constraint(Q")=A,NA, (15). (8), (11), (12), (15) =
= (M1 [e=M,]0 Q' (xT = 0f,....x" =, >) :(AF 1)/ A, NA, is inferable, and

constraints A,,A, are solved. Hence, (4 7) is typing of term M,[x:=M,].

3. In the last step of inference of the judgement
(Ax.M)M,)>0):(AF7)/A the rules [OMEGA] and [APP] is not used. By
Lemma 2.2, Q=0 N...ne 0, , A=A N...ne A, t=ér,N...Nnér, and
A=gANn..ne A, and the following judgements are inferable:
(AxM)IM,)>0,):(4,F1;)/ A, i=l,...,n, n=1. In our case in the last step of
inference of the judgements ((Ax.M)M,)>0,):(4, Ft,)/A, i=l,...,n, the rule
[OMEGA] or rule [APP] is used = by Ist and 2nd points of our proof,
(4, Ft,) is typing of term M,[x=M,]=by the rules [INT], [E-VAR],
(4, N...ne A Fer,N...ner,)= (A7) is the typing of term M,[x=M,].

Lemma 2.5. Let M,M'eTerm and M —, M'.If (AF7) is a typing of
term M , then it is also a typing of term M.

Proof. Let us denote by M, the f-redex corresponding to the one
step of beta reduction M —, M'. We will prove Lemma by induction on the
form of term M.

1. Let M=M ;. By Lemma 2.4, (A} 7) is typing of term M".

2. Let M=(Ax.M,), where M, € Term and M is subterm of M,. (4F7)
is typing of term (Ax.M,)=3Q e Skeleton, st the judgement
(AxM)>Q):(AF7)/A is inferable and A is solved. By Lemma 2.2,
O=eQ N...ne0,, A=e A4 nN...ne A, t=er,N...Nner, and A=¢A N...NEA,,
and the following judgements are inferable: ((Ax.M,)>Q0,):(4 F1,)/A,,
i=l,...,n, n=1. In our case in the last step of inference of the judgements
(AxM)>0,): (4 FF7,)/ A, i=l,...,n, the rule [OMEGA] or rule [ABS] is used.
Let us show that (4 t7,) is a typing of term M'. In that case
AF7)=(E4n...neA Fér,n...nér,) will also be typing of term M’
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(using the rules [E-VAR] and [INT]), which we need to prove.
M —; M'=3M| € Term such that M'=(Ax.M|) and M, —, M. There are two

cases to consider:

2a. In the last step of inference of the judgement
(AxM)>Q.):(4 F7,)/A; the rule [OMEGA] is used. Then (4 tr7,)=
=(env, - w). Because (env, - w) is a typing of any term, it is also a typing of
term M'.

2b. In the last step of inference of the judgement ((Ax.M,)>0,):(4 F1,)/A,
the rule [ABS] is used. Then 37/ € Type and environment 4 such that (4'F17/) isa
typing of term M,, 4,=A[x —> o] and 7,=(4/(x) — /). By induction hypothesis,
(4’ 1)) is atyping of term M| = (4, F1,) =(A[x > o]+ (4/(x) > /) is a typing
of term M’ (using the rule [ABS]).

3. Let M=(M,M,), where M,,M, eTerm and M, is a subterm of M,.
(A7) is typing of term (M,M,)=> 30 e Skeleton, s.t. the judgement
(MM))>0):(AF7)/A is inferable and A 1is solved. By Lemma 2.2,
O=egQ nN...neQ,, A=A nN...ne A4, t=er,N...ner, and A=A N ...NEA,,
and the following judgements are inferable: ((MM,)>Q,):(4 F1,)/A,,
i=l,...,n, n>1. In our case in the last step of inference of the judgements
(MM)>0):(4 F1,)/ A, i=l,...,n, the rule [OMEGA] or rule [APP] is used.
Let us show that (4 t7,) is a typing of term M'. In that case
AF7)=(E4n...neA Fér,n...nér,) will also be typing of term M’
(using the rules [E-VAR] and [INT]), which we need to prove.
M —; M"=3M|eTerm such that M'=(M{M,) and M, —; M|. There are
two cases to consider:

3a. In the last step of inference of the judgement
(MM)>0):(4 F7,)/ A, the rule [OMEGA] is used. Then (4 tr7,)=
=(env, - w). Because (env, - w) is a typing of any term, it is also a typing of
term M'.

3b. In the last step of inference of the judgement
(MM,)>0,):(4 1,)/A, the rule [APP] is used. Then 37,7 € Type and
environments 4,4’ such that (4] 1)) is a typing of term M, , and (4] F1}) is
a typing of term M, and 4=4' N4, 7/=(z] —,). By induction hypothesis,
(Al.1 F rl.l) is typing of term M| = (4. F1,)= (Al.1 r\Al.z F17,), is a typing of term
M'=(M{M,) (using the rule [APP]).

4. Let M=(M,M,), where M,,M, € Term and M is a subterm of M, .
The proof is similar to the proof of 3rd point.

2.2 Type Inference Algorithm and Principal Typing of Term. In this
subsection we will prove that in case of success the type inference algorithm

returns the principal typing of term. First of all let us consider terms that
are in [ -normal form.
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Lemma 2.6. Let M eTerm and M € -NF. Then if the judgement
M>Q):(A'F1")/A" is inferable, constraint A’ is solved, and the rule
[OMEGA] is not used during the inference of that judgement, then:

1. (AF1)=Dpify(M), i.e. the type inference algorithm succeeds for input M .

2. 3E € Expansion, st. A'=[E]A4 and t'=[E]r.

3. If in the last step of inference of the judgement (M >Q"):(4'F7")/A’
one of the rules [VAR], [CONST], [ABS] or [APP] is used, then the expansion £ is
a subtitution of the following form: E={a, = rao} in case of [VAR]; E=¢ in case

of [CONST]; E={e, = EEO} in case of [ABS]; E={q, =7, .6 =E, ¢, :=E, } In

case of [APP].

Proof. By induction on the form of term M .

1. Let M=x, where xeTermVariable. Then by the type inference
algorithm definition, A=env [x — a,] and 7=q,, which is the proof of first part
of Lemma's statement. There are two cases to consider:

la. In the last step of inference of the judgement (M >Q'):(A'F1")/A’
the rule [VAR] is used. Then Q'=x", A'=env [x—>7'] and A'=w. Let
E={a, =1"} = A=[E]4 and 7' =[E]r, which we need to prove.

1b. In the last step of inference of the judgement (M >Q"):(4'F7")/ A’ the
rule [E-VAR] or rule [INT] is used. By Lemma 2.2, O'~¢0/ n...Nné 0,
A=A Nn...ne A, t'=er/Nn...nér, and A'=A N..neéA , and the
following judgements are inferable: (M > Q)):(4/ 7))/ A}, i=l,...,n, n>1. Itis
easy to see that the condition of Lemma holds also for the judgements
(Mv>QO):(4F1))/A], i=1,...,n. In our case in the last step of inference of the
judgements (M > Q)):(A'Ft1))/ A}, i=l,...,n, the rule [VAR] is used. Hence, by
point la, 3E,,...,E < Expansion,s.t. A=[E 4., t/=[E]r;, i=1,...,n (1).

Let E=¢E nN..neE . By (1), [E]4=¢[E]AN...N¢ [E 1A= A ...
neé 4 =A" and [Elr=¢[E ]t N...Nné€ [E Jr=ér,N...Nné 1 =t', which we need
to prove.

2. Let M=c, where ce Constant. Then by the type inference algorithm
definition [1], A=env, and 7=2X(c), which is the proof of first part of Lemma's
statement. There are two cases to consider:

2a. In the last step of inference of the judgement (M > Q"):(A'F17")/ A’ the

rule [CONST] is used. Then Q'=x"), A'=env,, t'=3(c) and A'=w. Let
E=¢ = A'=[E]4 and 7' =[FE]r, which is to be proved.
2b. In the last step of inference of the judgement (M >Q"):(4'F7')/A’

the rule [E-VAR] or the rule [INT] is used. The proof is similar to the proof
of point 1b.
3. Let M=(Ax.M,), where xeTermVariable and M, eTerm. Let

B=initial(M,) and P= initial(M)=(Ax.e,P,) = constraint(P)=e,constraint(F,) .
Hence, by definition of the unification algorithm [1] and unification rules unify,,
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unify_, unify, [1], o=Unify(constraint(P)) < o,=Unify (constraint(F)), where
o=¢,/0, (2). Due to (2), due to the definition of the type inference algorithm [1]
and definitions of algorithms env and fype [1], (4 7)=Typifi(M) < (4, 1) =
=Typify(M,), where A=e, A [x > w] and t=(e 4, (x) = ¢,7;) (3). There are two
cases to consider:

3a. In the last step of inference of the judgement (M > Q"):(A'F1")/ A’ the
rule [ABS] is used. Then Q'=(Ax.0)), 4'=A4[x > @], t'=(4/(x) = 7]) and the
judgement (M, > Q):(4 1) /A is inferable (4). It is easy to see that the
condition of Lemma holds also for the judgement (M, > Q)): (4 F1/)/A|. Hence,
by the induction hypothesis, Typify(M,)succeeds and 3IE| € Expansion, sdt.
A'=[E 14, and 7/=[E ]r, (5). By (3) and (5), the first part of Lemma's statement is
proved. Let E={e, :=E|}. By (3), (4) and (5), [E]4=[{e, = E|}]e, 4 [x > @] =[E|],
Alx>ol=4 [x>w]=4" and [Elr={g, =E } (€4 (x) > er)=(E 4 (x) > [£]r) =
=(4/(x) > 1)) =1', which is to be proved.

3b. In the last step of the inference of the judgement (M >Q"):(4'F7")/ A’

the rule [E-VAR] or the rule [INT] is used. The proof is similiar to the proof of
point 1b.

4. Let M=(M M,). We will not present the proof of this case.

Lemma 2.7. Let M € Term and M € 3 -NF. Then if (4'F1'") is a typing of
term M and (A4+ 1) =Typify(M), then:

1. 3F € Expansion, s.t. A'=[E]4 and 7' =[E]r .

2. If in the last step of inference of the judgement (M >Q"):(A'F1")/A’
one of the rules [VAR], [CONST], [ABS] or [APP] is used, then E=w or E is
a subtitution of the following form: E={q, = rao} in case of [VAR]; FE=¢ in case
of [CONST]; E={¢,=E, } in case of [ABS]; E={a, =7, .¢,=E, .e,:=FE, } in
case of [APP].

Proof. The proof is very similiar to the proof of Lemma 2.6.

Now let us present the main theorem on the principal typing of a term.

Theorem 2.1. Let MeTerm and M €Term, st. M —, M'and
M'e B-NF.

1. If there exists a typing of term M’ such that during the inference of the
corresponding judgement the rule [OMEGA] is not used, then Typify(M)
succeeds.

2. If (A1) =Typify(M), then (A+ 1) is the principal typing of term M .

Proof. Let A=constraint(initial(M)) and A'= constraint(initial(M")). By
Lemma 2.12 of [1], Unify(A)=[Unify(A")]o, where o=[o,]...[0,]o; (1), and
substitutions o,...,0,, m=>0, are created by the rule uniﬁ/ﬁ during the work of
the unification algorithm for input A. Hence, by definition of the type inference
algorithm, both Typify(M) and Typify(M') are simultaneously executed or fail.
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1. Because there exists a typing of term M' such that during the
inference of the corresponding judgement the rule [OMEGA] is not used, then
due to Lemma 2.6, Typify(M'") succeeds = Typify(M) succeeds as well, which
is proves the first part of the Theorem.

2. We have that (A4F7)=Dpify(M). By Lemma 2.6 of [1], each

application of the rule wnify; corresponds to one step of f -reduction. Hence,
aM,,...,.M, € Term , such that M=M, =5 M, g M, =M', Al.=[al.]Al._1 R
Z'[:[O'l-]‘[i_l , where A =env(initial(M ;)) and t =type(initial (M)), i=l,...,m,
7=0,...,m (2). (1),(2) —?'Am=env(initial(M'))=[0']AO=[0']A and 7, =type(initial
M")=olr,=olr (3). By (1) and (3), (4F7)=Typify(M)=([[Unifi(A)]lo]4, -
H[Unif A)oTey) = (Unfiy(A)[o 14, HUnfiv(A)][o o) = ([Unifi(A)]1 4, H[Unifi A)]ro) =
= ([Unfiy(AN]A4,, F[Unfiv(A]r,) = Typify(M') (4). Let (4'F1") is a typing of
term M . By Lemma 2.5, (4" 7') is also a typing of term M'e f-NF. Hence by
(4) and Lemma 2.7, 3E € Expansion, s.t. A'=[E]A4 and t'=[E]r, which means
that Typify(M) is the principal typing of term M .

Remark 2.1. The type inference algorithm returns the principal typing of a
term that has a f -normal form, except for the situations, when it is impossible to
type a f -normal form of the given term without using the rule [OMEGA]. For
terms that do not have a f -normal form the type inference algorithm never
returns.
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U. Z. Unwphjjul
Mnjhunpd -ptpdtph whwyuyhtt Ynnkjunipyut dwuhi: 2

Uohmwnwipmd  phunwplymd & wnjhunpd  -ptpdkpp, npnbgnid  shu
hupnpuwmghw thnthnjumuutiph whuybph dwupl: Upjuwnwiph tyuwnwli k
wwugnigl], np [1]-md tbpluyugyus thnthnjuwubikph whyh wpnwsdub
wgnphpup nhyuwjtwgunid £ uynuhuh ppdipt wdktwpunhwinigp duny:

A.T. Apakessin.

O THIIOBOIi KOPPEKTHOCTH HOJIUMOPGHBIX A -TepMOB. 2

B pabote paccmarpuBaroTcss monuMop@Hbie A -TepMBbI, B KOTOPBIX OTCYTCT-
ByeT MH(popManusi O THHAX IepeMeHHbIX. Llenb maHoil paboOTHI — J0Ka3aTh, YTO
MpeACTaBIeHHBIN B [1] aNropuT™M THNU3AIMK BHIBOAUT CaMblii OOIIMN THIT TaKUX
TEPMOB.



