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VACUUM FLUCTUATIONS IN COSMOLOGICAL MODELS
WITH COMPACTIFIED DIMENSIONS
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We study quantum effects of scalar fields in cosmological models of
Friedman-Robertson—Walker with a power-low scale factor and spatial

topology R’ x(S8")?. Recurrent formulae are obtained for positive-fre-
quency Wightman function, vacuum expectation values of the field
squared and energy density.
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1. Introduction. It is expected that in string theory the most natural topology
for the universe is that of a flat compact three-manifold [1]. In inflationary scenario
universes with compact spatial dimensions, under certain conditions, should be
considered a rule rather than an exception [2]. The models of a compact universe
with nontrivial topology may play an important role by providing proper initial
conditions for inflation (on the cosmological consequences of the non-trivial
topology and observational bounds on the size of compactified dimensions see, for
example, [3]). The quantum creation of the universe with toroidal spatial topology
is discussed in [4-8] within the framework of various supergravity theories.
Vacuum expectation values of the field squared has been considered in the
previous work [9].

The compactification of spatial dimensions leads to the modification of the
spectrum of vacuum fluctuations and, as a result, to Casimir-type contributions to
the vacuum expectation values of physical observables (on the topological Casimir
effect and its role in cosmology see [10] and references therein). The effects of the
toroidal compactification of spatial dimensions in dS space-time on the properties
of quantum vacuum for a scalar field with general curvature coupling parameter are
investigated in [11]. The one-loop quantum effects for a fermionic field on

background of dS space-time with spatial topology R” x(S')? are studied in [12].
In the present paper we investigate the effect of the compactification of one of spa-
tial dimensions in the Friedmann—Robertson—Walker (FRW) cosmological models
with power-law scale factor. For a scalar field with general curvature coupling
parameter we evaluate the vacuum energy density.
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In this paper we consider the Wightman function for the background FRW
space-time with topology R” x(S")?. We decompose this function in two parts: the
first one is the corresponding function for the uncompactified FRW space-time,
and the second one is induced by the compactness of the spatial dimensions. We
use the Wightman function for the evaluation of the vacuum energy density. As the
part corresponding to the uncompactified FRW space-time is well-investigated in
literature, we are mainly concerned with the topological part. The asymptotic
behavior of the latter is investigated in detail in early and late stages of the
cosmological evolution.

2. Wightman Function in FRW Space-time With Compact Spatial
Dimensions. We consider a quantum scalar field with curvature coupling para-
meter £ on background of the (D +1)-dimensional FRW space-time. The field
equation has the form

(V,V' +m’ +ER)p=0, (1)
where V, is the covariant derivative operator. The values of the curvature coupling
parameter £ =0 and & =&, =(D—1)/4D correspond to the most important special

cases of minimally and conformally coupled fields. We will write the corres-
ponding line element in the form most appropriate for cosmological applications:

ds* =di* - az(z)i(dz")z, a(t)=at. Q)
i=1

For the further discussion, in addition to the synchronous time coordinate ¢ it is
convenient to introduce the conformal time 7 in accordance with

t=[a(l- c)r]l/(l_c) , a(t)=ala(l- c)r]c/(l_c) ) (3)
Note that 0<7 <o for O<c<l, and —w0<7<0 for ¢>1. In terms of this
coordinate the line element takes conformally flat form:

ds* :92(1){0112 —i(dz"f}, Q@ =a*[a-a ", @

and the corresponding Ricci scalar has the form
R Dc[(D+1)c—2]

= ©)

[Oc(l—c)r]z/(1 :
We will assume that the spatial coordinates 21 =D, +1,...,D, are com-
pactified to S': 0<z' <L , and for the other coordinates we have —oo <z’ <+,

[=1,...,D, . Hence, we consider the spatial topology R™ x(S')”. For D, =0 as a
special case we obtain the toroidally compactified FRW space-time. The results
obtained here can be used to describe two types of models. For the first one D=4,
and it corresponds to the universe with Kaluza—Klein type single extra dimension.
For the second model D=3, and the results given below describe how the
properties of the universe are changed by one-loop quantum effects, induced by the
compactness of a single spatial dimension.

For a scalar field with periodic boundary condition one has

P(1.2p -2, +Lp ) =0(0.2p, .2, ) » Where 1 =z L2,

s Ip =(zl,...,zD‘),zD2 =(z
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Ly =(Lp5--Lp) . In this paper we are interested in the effects of non-trivial

topology on the vacuum expectation value (VEV) of the energy density. This VEV
is obtained from the corresponding Wightman function in the coincidence limit
of the arguments.

To evaluate the Wightman function we employ the mode-sum formula

Gy (1) = {0l () (¥ )]0) = Zo, ()5 (). ©)

where {(og(x),(o;(x)} is a complete set of positive and negative frequency

solutions to the classical field equation and satisfying the periodicity condition
along the compactified dimension. The collective index o specifies these
solutions. For the problem under consideration and in the case of a massless field
the eigenfunctions have the form [9]

0, (x) = Con"H (ke =™ (7
with the notations

kp =(kysoskp)s by = (kp oo kp), K :,/kf,l +kp,

k,=27n /L, n=0,£L%2,..., =D +L...,D,

1 ¢D-1
b = — . 8
2 c-1 ®
and the order of the Hankel function H”(x) is defined by the relation
1 2 1/2
v=—-ii(cD-1)" -4EDc|((D +1)c-2|; . 9
2|1_c|{( )’ —4£Dc[(D+1)e—2]} ©)

Note that for a conformally coupled field v =1/2.
The coefficient C, with o =(k, ,np,;,....1n,) is found from the ortho-
normalization condition:
—if lele” [ 2, (¥)0,0% (x) — 2 ()00, (x) |[d"x = ., (10)
where the integration goes over the spatial hypersurface 7 =const, and 6__. is

understood as the Kronecker delta for discrete indices and as the Dirac delta-
function for continuous ones. This leads to the result

De/e-)) vy yuif2
el P
|Ccr| = 2p+2ﬂ_p—1aD—qu

Substituting the eigenfunctions (7) with the normalization coefficient (11)
into the mode-sum formula for the Wightman function, one finds

, V=L, L. (11)

oo A
G, (xx)=——""7—x

27y,
XJ‘ eikp~Azq Z eikq Az, KV (knesign(r)m'/2 )KV (kT] re—sign(r)ﬂi/Z)dkp , (12)
where Az =z' — 2" k=, /ki +qu_1 +k£+1 and
A=a"Palt-d]" . (13)
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In (12) we wrote the Hankel function in terms of the MacDonald function
K,(z). It can be seen that after the application of the Abel-Plana summation

formula [10, 13] to the series over n,,, the following recurrence formula is
obtained:
Gy (3:X) =Gy ga (1.6) 4 8,1 (). (14)

p+l
where the first term on the right is the Wightman functlons in the FRW space-time
with p+1 uncompactified and ¢ —1 toroidally compactified dimensions, and the

second term is induced by the compactness of the z”*'-direction and is given by
the formula

A(nn')’ :
N ik, Az, ik, Az,
A, Gl (xx )_(27r)p—”er D e dk, x

g-1 My ==

w ycosh(Azp+1 y2+k§+k,fq_1)

X P x (15)
{ L (ny [1 (') +1, (n'y)]+[1, (ny)+ 1, (ny)]K, (0'v)} dv,
where V,_, =L,,,--L, and the notation
D
kﬁ a= 2 (27Tn1/L1)2 (16)
I=p+2

is introduced. Note that in this formula the integration with respect to the angular
part of k, can be done explicitly.

3. Vacuum Energy Density. Now we turn to the investigation of the VEV
for the vacuum energy density. Using the Wightman function we can evaluate this
VEV by making use of the formula [14]

: Dacs ’ 1
<0|Too|0> = }}LnxaoaoG (o, x7) + Kf _ngoovlvl —&VyV, _§R00}<0‘(02‘0>, (17)
where R, is the Ricci tensor for the FRW space-time with the 00-component
o DO
0 (1-c)z*’

As in the case of the Wightman function, the renormalized VEV of the energy
density is presented as the sum

<T00>p,q :<T00>p+1,q—1 Ay <T00>p,q ’ (18)

where the part due to the compactness of the z”*'-direction is given by the

expressions

2 2
PN A -l Sy R el Ry 0
» Pa ﬂ(p+3)/2Vq_l Py n=1 (an+1)p_1

with the notation
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F(O)(z):% i;(z)&(z)+z(?—$(i(z)k(z)) —%[HD;‘

In (20) we have defined the functions
£, (x)=x"K,(x), K,(2)=2"K,(z), L( —zb[l )+1,(z )] (21)

After the recurring application of formula (18), the vacuum energy density

~(D+3)c

2o

}1 (2)K,(2).(20)

in FRW model with spatial topology R” x (S1 )q is presented in the form
o\ _ /70 0
<T0 >p,q _<T0 >FRW +<T0 >c’
where <T00 >FRW is the corresponding quantity for uncompactified FRW space-time

and the part

0 _ < 0
<T° >c h EAD‘M <T° >D—l,l (22)
is induced by the toroidal compactification of the g -dimensional subspace.
For a conformally coupled massless scalar field one has v=1/2 and

(1, (x)+1,(x)]K, (x)=1/x. For the function F (z) we have:

£ (2= 2 {;((11_—_’3))_} (23)

[/, /2(a 2 +b \Ff"/z 24)

for the case of a conformally coupled field we find

Using the formula

207 P o @ Jpou (an+lknq_l)

e o) n S

-1 M1 =0 n=l1 (I’ZL

Ay (T3 (25)

p+2
p+1)

Formula (25) could also be obtained from the corresponding result in (D +1)-dimen-

sional Minkowski space-time with spatial topology R” x (S ! )q , taking into account

th . 0 D1 0\(@)
at two problems are conformally related: A, (7; =Q 7 A, (T .
P9 2

A similar formula takes place for the total topological part.
The general formulas for the topological part in the VEV of the energy
density are simplified in the asymptotic regions of the parameters. For small values

of the ratio L /77 we can see that to the leading order A <T0°>p , coincides

with the corresponding result for a conformally coupled massless field given by
formula (25). Note that in terms of the synchronous time coordinate we have
Lp+1/77 = a|1 —c|Lp+1t”"1 and, hence, A <T00 >p , oo t“P*) Hence, the limit under

consideration corresponds to the early stages of the cosmological expansion
(t—0)in the case ¢>1 and to the late stages (¢ — +0 ) in the case ¢ <1.
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For large values of the ratio L, /n and in the case of real v, using the

asymptotic formulae for the modified Bessel functions for small values of the
argument, to the leading order one has

F(o) (Z)~ 22V IDF(

r(1-v)z¥
From formula (19) we find
29Dl D/2—v +2&(2v—D-1
(o) SHPLDRoveR @D
p+l g

[D/z v+2£(2v-D-1)]. (26)

( ) Z f(p+1)/2—v (an+1knq_l)
(277) (p+3)/2 VLp =2 Dl 2v-D P2

nn,

. 27)

0
‘p+1

In terms of the synchronous time coordinate one has A, <T0°> oo (772N For
Pq

small values /L __, and imaginary v , in a similar way as in the previous case, in
p+1 y y >

terms of the synchronous time coordinate we find

_27'Dl- "B,

0 20:1 sin[2|v|t/a +|v|1n(Lp+1/a)+(p0], (28)

Ap+1< 0 >p!q ~ (27T)(p+3)/ VLP

p+1

where B, and ¢, are defined by the relation

|(1/2-28)+i[ D/4-(D+1)¢] = S(paya-i (anHk,,q,l )
. Z +1-2ilv : (29)
F(1—1|V|) n,_ =0 n=o0 np ‘ ‘
This limit corresponds to the late stages of the cosmological expansion
(t — +o0) in the case ¢>1 and to the early stages (1 —0) in the case c<1.

B iy _ -9 il

4. Conclusion. Compactified spatial dimensions appear in various physical
models, including Kaluza—Klein type theories, supergravity, string theory and cos-
mology. In this paper we investigate the quantum vacuum effects in FRW space-
time induced by non-trivial topology of spatial dimensions. We consider a scalar
field with general curvature coupling parameter, satisfying the periodic boundary
condition along the compactified dimensions. Among the most important charac-
teristics of the vacuum are the VEV of the energy density. Though the corres-
ponding operator is local, due to the global nature of the vacuum this VEV carry an
important information on the global structure of the background space-time.

In order to derive formula for the vacuum energy density, we first construct
the Wightman function. Using of the Abel-Plana summation formula, we have
extracted from this function the part, corresponding to the Wightman function for
the uncompactified FRW space-time. As the topological part is finite in the
coincidence limit, by this way the renormalization procedure is reduced to that for
the standard FRW case. The latter was already realized in literature [4]. As a result
the vacuum energy density is decomposed into FRW and topological parts. For
general values of the curvature coupling parameter the corresponding formula is
simplified in the asymptotic regions of small and large values of the ratio L, /5. In

the first case the leading term in the energy density is the same as that for a

conformally coupled field, and the topological part behaves like PV This limit
corresponds to the early stages of the cosmological expansion in the case ¢>1 and
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to the late stages in the case ¢ <1. For large values of the ratio L,/n the behavior

of the topological part is different for real and pure imaginary values of the

(D=2v)(1=c)

parameter v. In the first case this part behaves like ¢ , whereas in the

second case the decay has an oscillatory nature /(™) sin(2|v|t/ o+ (P1) . This limit

corresponds to the late stages of the cosmological expansion when ¢ >1 and to the
early stages when c<1.
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U. L. Uhpupjui

Julninudught injinmughwibpp hndyuljn swhbpny Ynudninghwfjui
unnbyubpnid

Munidtwuhpymd o ujupup  pguonh  pduwbnughtt  Eplnygpubpp
wunhdwbuyhtt  dwupnwpughtt wluinpny  dphplwt-Onphppunt-Ninltph
ynuuninghwljmb  dnpbjubpnid, npnbp  mukh  R? x(S')?  nuwpuswlulb
unynnghu: Unwgdws i duypuwih ppuwlubt hwdwpughtt $nibiljghugh
winpunupd pubwdlkp quonh punwlniunt b Eukpghuyh dhphtttph hwdwp:

A. JI. Mxumapsn.

BakyymHble (uIyKTyanuu B KOCMOJOrH4eCKHX MOJeJIsX
¢ KOMIAKTHBIMH U3MepPeHHsIMHU

Uccnenosansl kBaHTOBBIE A()(PEKTHI CKATISIPHOTO MOJSA B KOCMOJOTHYECKUX
Mogensix @punmana—PobepTcoHa—Y okepa co CTENeHHBIM MacITaOHBIM (PaKTOPOM

¥ C OpOCTpaHCTBeHHOM Tomonorueit R” x (S')?. Tomyuensl pekyppeHTHbIe (op-
MYJIBI TS OJIOKUTENHLHO-4aCTOTHOH QyHKIMHU BailiTMaHa 1 IIIOTHOCTH SHEPTHU.



