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ON THE RABIN’S SPEED-UP OF PROOFS FOR SOME SYSTEMS
OF FIRST ORDER LOGIC
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In the paper a notion of ordinary theory is considered. It is proved that some
systems of first order predicate calculus are ordinary. This property is used for a
proof complexity comparison in the considered systems.
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It is well known that investigations of proof complexities in propositional
systems are very important due to their tight relation to the main problem of
complexity theory: do the classes Pand NP coincide? Besides, there is a close
relation between the proof complexities in bounded arithmetic and propositional
logic. Therefore it is useful to conduct comparative analysis of different formal
systems to discover existing relations between them. Researchers in this particular
area were used to divide systems to “stronger” and “weaker” ones. During the
investigations in this direction it becomes very interesting to research the speed-up
phenomena caused by existence of “stronger” formal theories. There are many
results in this particular area. Some of them relate to the length of proofs, others —
to the number of steps in proofs.

In some results a formula with speed-up is pointed out [1], in others — an
infinite set of formulas the proof of which possesses the speed-up property [2]. We
introduce such a generalization of the proof complexity notion that traditional
characteristics of proof complexities — the number of steps and the length of the
proof, satisfy our definition. Moreover, we consider such pairs of formal theories,
for which the proof speed-up phenomena may be regarded as an analogue of
Rabin’s calculation speed-up. In the work we use the ordinary theory notion
introduced in [3].

Definition 1. The theory @ is called ordinary if there is a pair of recursively

enumerable and effectively inseparable formula sets M f) and M? of theory @
and two algorithms A and A,, which for each formula a from @ produce,
respectively, formulas A (o) and A,(a), such that the following conditions hold:
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1. aeM?,iff },A(a) and aeM?,iff },A(a);

2. For any formula S of @ if |-q)ﬂ v A () and |-@A2(a), then er) .

It is necessary to stress the main purpose of introducing the special notion of
ordinary theory. If sets of provable and disprovable formulas of some formal
theory form a pair of effectively inseparable enumerable sets then such a theory is
an ordinary one. Different formal systems of full arithmetic and Robinson’s
arithmetic are examples of such theories. Indeed, in this case as a pair of
recursively enumerable effectively inseparable formula sets M:p and M? it’s
enough to take, correspondingly, the set of provable and disprovable formulas, and
as algorithms A () and A,(a) — such ones, that A(a)=a and A, (a)=-c.
However, in case of predicate calculus the situation is quite different: sets of
provable and disprovable formulas are recursively separable, for instance, by set of
formulas identically true in classical sense on two-item models. Ordinarily of
predicate calculus is can be proved by the well-known method of embedding
Robinson’s arithmetic into the predicate calculus (see, for example, [4]). The
notion of ordinary theory is important for studying the speed-up.

Further we consider such pairs of formal systems, one of which is derived
from the other one by adding a formula not provable in the first formal system.

Definition 2. Theory ¥ is said to be an extension of theory @ (denoted as
¥ o @), if any formula of @ and any proof in this system are, respectively, a
formula and a proof in the theory ¥ .

A notion of proof complexity is introduced in [3] by analogy with Blum’s
general concept of calculation complexity.

Definition 3. Denote by C,(a) the minimal proof complexity of formula «
in the system @ , where C(«) is such a general recursive function that for each »
the equation C(ar) =n has only finite number of solutions and there is an algorithm
that generates the set of all solutions of this equation for every n.

The following statement was proved in [3].

Main Theorem. Let @, be an ordinary theory, a be such a formula of

@, that a g M™ and o ¢ M™ . Further let @, be such an extension of @, that

|-(p7a. Then for every general recursive function f there is such a number n,

that for any n, greater than n,, there is such a formula «, that C, (a,)<n and

Co,(a,)> f(n).
The proof of this theorem is based on a difficult digitalization method
allowing to construct the necessary formula for every n>n,.

It is proved in [3] that if @, and @, are such arithmetical or Hilbert type
pure predicate systems, that @, © @, , then the statement of the Theorem holds. We
show that for some new systems of pure predicate calculus the result holds as well.

Let HP., HP,, HP,, SP., SP,, SP,, NP., NP,, NP, ,SP., SP,, SP,,
RP., RP,, RP, be Hilbert-type ( H ), sequent (S), natural (N ), cut-free sequent

(S7) and resolution ( R) systems of pure predicate calculus, respectively, based on
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classical (), intuitionistic (,) and minimal (,,) logic. Hilbert type systems,
sequent systems and cut-free sequent systems for classical and intuitionistic logics
are well-known (see, for example, [4]). Natural and resolution systems for
intuitionistic logic are defined in [5], other systems are defined in [6, 7]. It is easy
to see that all these theories are ordinary in the meaning defined earlier and the
statement of the Main Theorem is also valid for every pair @, and @, of the above
mentioned systems, for which @, o @, . But we can also prove the Main Theorem
for other pairs.

Definition 4. Theory ¥ 1is a strong extension of theory @ (denoted as
Y o @), if for any object (formula, sequence, formula set) provable (refutable) in
@ a corresponding provable (refutable) object may be pointed out in ¥ .

Theorem. Let @, be an ordinary theory and o be such a formula of @,

that c g M and o g M™ . Assume that @, is a strong extension of @,, and
there exists an algorithm that for every proof or refutation in @, constructs a proof
or refutation of the corresponding object in @,. Then for every general recursive
function f there is such a number #, that for any n, greater than n,, there is a
formula e, , such that Cq)2 (a,)<n and C‘Pl (a,)> f(n).

Corollary. The statement of Main Theorem holds for every pair of the above
mentioned systems with lower indices M and /, M and C, [ and C.

The proof follows from the Main Theorem and the results from [5-7], where
the algorithms producing the proof in some system based on a proof given in
another system are constructed.

Summarizing the said above, one can conclude that for a quite wide classes
of formulas the proof complexities in “weaker” systems can be much higher than
the proof complexities of same formulas in “stronger” formal systems.
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U. U. onipupyuiby, 2. 3. Pnjhphljjut

Unwgohti jupgh mpudwpwtinipjut npny hwdwljupgpnid
wpunwdnidubph Qwphih wpuqugdwb dwuhb

Znnpusnid nuunidbwuppymd o phwub wnbunipjub  qunudiwupp:
Uwugnigjuws E, np wnwehtt Jupgh wpbnhfuwnbbph wbunipyut dh owpp
hwdwlupgtp ptwfut G Ujp hwnlmpmniip ogunugnpsdus b ghwwplyng
hwdwljupgipnid wpunwdsmdubph papnmpnittbph hwdbdwnnipyut hwdwp:

A. A. Yy0apsH, O. P. BonoeksH.

O0 yckopenun PaduHa 1,151 BEIBO/IOB B HEKOTOPBIX CHCTeMax
JIOTUKH NEePBOro mopsjakKa

B craTtbe paccMaTpuBaercs MOHATHE CTaHJapTHOM Teopuu. i psaia cucreM
WCUHCIIEHUSI TPEAMKAaTOB IMEPBOro MOpAAKa [OKa3aHO, YTO OHHM SIBISFOTCS
cTaHiapTHeIMM. Ha OCHOBE MOHSTHS CTaHAAPTHOM TEOPUHM IPOBEIEH aHAJIN3
CJI0)KHOCTH BBIBOJIOB B YKa3aHHBIX CHCTEMaX.



