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PROPERTIES OF ONE LIMIT LAW IN RISK THEORY

A.R. MARTIROSYAN*
Chair of the Theory of Probabilities and Mathematical Statistics, YSU

In the present paper some properties of one random process arising in many
limit theorems of risk theory are investigated. Connection formulas with stable
distributions and with one class of integral transforms are found. The asymptotical
properties of this law are studied.
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Introduction. In limit theorems of risk theory in critical situations (see [1])
the limit law with LaplaceStieltjes transform (LST) e arises, where 0 = A(s)
and 0=V(s) are solutions of the equation z’ Fz=s' s>0, with initial
conditions A(0)=0 and V(0)=1, respectively’. It is known that (see [1]) the
distribution function (DF) F (x,¢) of random variable (RV) &(£)=&(% y) with LST

e ) is absolutely continuous and has density

0
f()(x’t) =Re {i I exzrv —(t+x)z (yz}’—l T 1)d2} —
T

—i

={YyTXaz0 N y

(t/(2x\/5))exp{—(tix) 2/4x}, y =2,

n _nl
! z(—t+x) F(nJrljx v sinn—Hﬂ, l<y<2,
/4 x>0, 0<t<oo. (1)
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Here and later on in signs “ =+ ” and “ ¥ ” the upper sign is taken in the case of function V , and the bottom
one in the case of A .

o

For y =2 we have 0(s)= (li Vés +1)/2 . For some other values of parameter y the solution z=0(s) may
be found as well. For example, for y=(k+1)/k, k=1,2,..., and y=(2k-1)/k, k=2,3,..., the equation

2’ Fz=y takesthe form y*'F3" =5 and y*'F)y" =s5.For y=15 the function O(s) may be found by
means of Kardanos formula or program “Mathematika”. For example, fory =1,5 the function V(s) under

condition V(0)=1 takes the form

V(s)=3" {1 #27 (14 65)(2+185 4275+ 33/4sT + 275" )"/3 +27(2+4185+275 + 334"+ 275" )'/3} :
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Theorem 1. Let t—0 and 6 -+, so that 6"t —>7(=1). Then
lim P{6Z, (1) < x} = G,,, (x), where G,, 0<a <1,is a stable DF with LST ¢ .
The proof follows from the relation
s=s"(1+o())=s(1+ 1)), s—>0, A,
O(s) =41+s(y =)' 1+ 0(1)), s—0, V,
s £y 1+ o) =5V 1+ 0(1), s— o, O,

which for the case of function A is presented in [4], and is easily proved for V .

n

d n
Lemma 1. §O[Ztkj=250(tk), n>2, t,t,,....t, >0, where {éo(t,.)}:'zl is
k=1

k=1
d
the sequence of independent RVs, and “="" is the DFs equality sign.

Theorem 2°. The function O(s)>0 has a completely monotone (CM)
derivative. L e.

=D"©O'(s)™ =0, s>0, n=0,1,2,...
Proof. Since the function ¢(s)=1/0(s), being a LST of some measure (see
[1] and [4], p. 505), then O'(s) =—¢'(s)¢ > (s) . Obviously, 0'(s)=(y "' (s)F1)"' >0.
Since —¢'(s) and s~' are CM and ¢*(s) = (—¢(s))(=4(s)), then, by criterion 2
from [4], p. 507, we conclude that (—¢(s))"' is CM. Then ¢ >(s) as a product

of two CM functions is also CM (see [4], p. 507). Therefore, ¢'(s) = (—¢'(s))p >(s)

is CM.
Subordination.

a) From the definition of V(s) it follows e ") = ¢ VO Ag V'(s) is

CM, then (s +V(s)) is also CM. Then e“*V®) is a LST for DF E,(x)* F, (x,t),

1, x>t . . .
where E,(x) = {0 < and * is the convolution sign.
b x — ¥

It is known, that DF Ut(x):fEu(x)*Fv(x,u)duGl/y(ut"y) has a LST
0
eV’ (see [4], p. 508). From the Uniqueness Theorem (see [4]) and from
eV = VO e obtain equality F, (x,f) = [ E, (x)* Fy (x,u)d, Gy, (ut™),
0
which due to the relation FE (x)*/Fy(x,t)=F,(x—u,t) takes the form

Fy(x,0) = [ Fy (x—u,u)d, Gy, (ur™"), or in terms of densities —
0

' Proof of Lemma 1is obviously and in case of function A is proofed in [3].

> From Theorem 2 it follows (see [4], p. 516) that F,(x,t) is infinitely divisible, and 0'(s) :J;e “dP(x), where
0

P is the measure on [0,00).
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Iy (x,t)=iyffv (x—u,u)p[i 1 —ljdu.
o y

t}, b J/ 2
b) Since O(s) is the solution of equation z” Fz=s, then the relation
V(s)" +V(s)=s+2V(s), s>0, holds, whence the formula V(s)=A(s+2V(s)),

s>0, follows. As V'(s) is CM, then (s+2V(s)) is also CM. The
function ¢ '“**V¢) is a LST for DF E (x)*F,(x,2t). Therefore, DF

U,(x)= [ E,(x)* Fy (x,2u)d, Fj (u,t) has a LST e "¢**V) (see [4], p. 508).
0

—tV(s) — e—tA(s+2V(s))

Now from e and from the Uniqueness Theorem we

obtain  Fgy(x,t)= I E, (x)*Fy(x,2u)d, F,(u,t), which due to the relation
0
E (x)*Fy(x,2u) = F,(x —u,2u) takes the form F (x,t)= IFV (x—u,2u)d F, (u,t),
0

or in terms of densities — f (x,¢) = va (x—u,2u) f, (u,t)du .
0

Maximal Likelihood Estimate of Parameter §=¢ for y=2. Let y =2
and X =(X,,X,,...,X,)>0 be a sample from general collection with DF F,(x,0),
0 €® =(0,+x). Let’s consider the likelihood function L(X,0)=]]/f,(X,.0)
k=1
with f,(x,0) =0e @*9"* [2x/zx , and the likelihood equation
OlnL(X,0) & 1 Oln f,(X,,0) _

20 /;fo(Xkag) 00

0,
. 1_1| 6& 1 . A ot
which takes the form n| —F—|-—=> —=0. Denoting p,=(2n) > X, , we
6 2 2 k=1 Xk k=1
obtain the equation p,0°+6/2-1=0, the solution of which is
0=(¥1£1+16p, ) 4p, . As 6=(-1-\[1+16p,) /4p, €O, then in case of V
for parameter @ we have just one estimate 6 = (—1 +1+16p, )/4pn €0.
Connections with Other Laws. The density f (x,7) and the DF

. . P Bl
F,(x,7) may be connected with functions Qﬁ,ﬂ(s):i e =P gy
L rz.p

and 'Pﬁ,ﬂ(x)zféﬁ!ﬂ(t)dt, xe€[0,0), Be(0,m), I/f<pu<+wo (see [5]). Here
0

for any €>0 the contour I'(g,8) of complex plane z is run in direc-
tion of decrease of arg(z). The contour consists of two rays (see Fig.1)
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L, p) = {z rarg(z) =xp,e < |z| < +oo} and the arc of circle [(g,0)=
= {z :|arg(2)| < B.|2| = e} , joining the ends ge*” of those rays. It is proved in [5],
that the function @, ,(s) is entire and may be expanded into series

¢ FA—p+k+DB™)
k!

sinz((k+1) /B-w)s* . ()

Arg(z) %Ty

®ﬂgw=—§§¥4)

1

Fig. 2.

It is also known that £, (—x, )= Ie“”d'f’ﬂ,y (@,
0

xe[0,40), 1<B<+w, 1/B<u<+wo, where
the entire functions E,(—x,u) of Mittag—Leftler

type are defined through expansion
k

- z
Egj(z )=, ————= 7, B>0, —o<u<+o0.
! ST (uvkp™)
Taking u=1, f=y and s=(r+x)x"" in
Fig. 1. formula (2), we obtain

fo(x,7) = T;/_lxl/y—l(D%l (r+x)x"7).
Hence, from properties of ¢ and from relation O(it)=0(—it) we
conclude, that z=V(ir)e{lm(z)>0, Re(z)=1, 0<Arg(z)<n/2y} and
z=A(it) € {Im(2) >0, Re(z) 21, 0< Arg(z) <7/2y} for 1e(—0,0] (see Fig. 2).

. 1 K —itx—10(—i
Then, due to conversion formula (see [4]) fo(x,r)zz—Re I e T gy =
r

—0

0
~1Rre [ e™®"qr, by methods from [1] and [3] it is easy to obtain the
T

—0

representation  f; (x,7) = Re {L [e = (" 5 l)dz} . Comparing the latter
i g
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1 =
— I e’ _(Tix)z(yzy'lil)dz ,  where
27

—ioo

with (1), we conclude f,(x,7)= Re{

changing the integration variable y = x7z, we obtain

1 io y -y
fo(x,7)= Re{z—m I e ~ENx 7y (},xl/y—ly}'—l il)x_l/ydy} )

Let’s consider a closed contour Y =C,U[-R,RJUCRUI,, where
C; :{z:Rei“’,ﬂ Sgoﬁﬂ/2y}, C ={z=Re’¢,—n’/2Sq)S—ﬂ}, nf2y<B<m/2,
and let 1", be the part of the curve I" (see Fig. 1), bounded by those arcs. As
h(y):ey'v"(rix)x_l/yy (j/xl/y"lyy—1 il)x"w is analytical inside of Y, then, due to

Cauchy Theorem, we get f h(y)dy=0. Let’s show that f —— 0.
r

R+
Ck.Ca

Changing the integration variable y = Re” and taking into account that cosyp <0,
we get

y-1_y-1 _
» —(rix)x_l/'vy }/x /7 )/7 +1
e 1—/dy
x 14

/2 1/y-1pyr-1
y _ Iy X R +1
< J’ eR cosyp—(rtx)x " Rcosg 14 Rd

N o|— 0.

Ch.Ch B

Tending R to infinity, we obtain

1 7 —(r+x)x V7 — - -
fo(x,7)=Req— I e’ T /y(;/xl/y ! 1il)x Vrayl,
L r(e.p)

and comparing the latter representation with @, (s), we get
fitkn)=x"o,,, ((r +x)x 7 ) T y‘lx‘l/hpy!l ((T +x)x ) '
Taking into account the relation f,(x,7)= T}/—lxl/y—l(py,l ((r + x)x_1/y ) we
get
fox,t)=1x"" (r + X7 )_1 D, ((T +x)x ) '
Let 0<y, <y, <40, 0< y; <400 and —oo < 1, <+oo. Then (see [5]),

/4

o0 - J/
E, (z,1)= .[Eyl (zrl/y‘ ,yl)r” 1<DM (r)dr, z| <+, 1=, +y—1(1—,u1) y =y—2. 3)
0 2 1

Let X and Y be independent RVs with DFs F and G, and with LSTs ¢
and ¢ respectively. It is known that (see [4], p. 521) the LST for the RV XY is
given by the Parseval’s equality

T(D(S)c)dG(x) = T(]ﬁ(sx)dF(x) .
0 0

Therefore, relation (3) is the LST for the RV XY, where RVs X and
Y are independent and have DFs L (x) and G(x) respectively. Here

dG(x)=x"""Dg¥  (x") (i. e. G(x) has density y,x"“ '@, (x")). Or, as
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E, (zrl/yl L ) = je”r_l/y‘ D, . (vr_l/y‘ )dv , we can consider the relation (3) as the
0

LST of RV XY, where RVs X and Y have densities T_l/yl®7ln“l (vr‘l/yl) and

1 - 1
@, ,(7) respectively. r=15

Let’s consider stable den- gt
sities p(x,a,p) (see [4], p. 657)
with characteristic function (CF)
g(t)= exp{—|t|a exp{iﬂi(o/2}}, 0.4}
where O<a <2, =£=sign(t), g2}
a, O<acx<l,
|(o| < One-
2—a, l<a<?2.
sided densities p(x,1/y,-1/7),
1<y <2, are of special interest

0.6

here.

In Fig. 3 the graphs' of
densities  p(x,1/y,-1/y) and
fox,)  for y=L15;1,6; 1,7;
1,8; 2 are presented. In Fig. 4 the

graphs of density f,(x,1) for
large values of the argument and
those close to zero in the case of
y =1,7 are presented. Oscillation

in the graphs confirms the need to
consider the asymptotical beha-
vior of those densities on infinity
and nearly zero separately.
Substituting k=n+1 in (1)

and taking into account the 02 04 06 08 1 1.2 1.
formula ol (@)=T(ax+1), we i1
obtain Fig. 3.
I (£ 4 ) ) -
fo(x,0)=— ZMF(IW D h 1s1n7T—,x>O,O<t<oo.
T k=1 /4

Since 0<1/y <1, then from [4] (p. 659, Lemma 1), for function V we have
fo ety =t(t+x)"""" p(x/(¢+x) ,y",=y™"). For function A and 0<x<t<w
we obtain fA(x,t)zt(t—x)‘y‘lp(x/(t—x)7,l/y,—l/y), and for 0<t<x<o we
get fo(x)=t(x—0)"" p(x/(x =1 ,1fy.3/y ~2).

' The graphs are constructed by means of program Matematika, whereas the first 2500 members of corresponding
series are taken.
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Due to formula [I'(a)[(1-a)=n/sinta, O<a<l, we obtain
L6 =x" [y ((r =1y ).
For density f, (x,f), x,t>0, with LST " we have (see [4], p. 659,

Lemma 1)
n,n _LH
f, ()= 7Tx a0 ! Y Y
(t/(2x\/ﬂx))exp{—t2/4x}, y=2,

and, denoting 6(r) =Fr for O(s) and 6(r)=0 for s"7, we obtain

r$ (=) (t -5 (x))" F[”“jxﬁ

. 1
7 sin 2 r, l<y<2,
fo,l/},(x,t): YITX 1m0 n , »

(t/(2x\/5))exp{—(t—5(x))2/4x}, y=2,
for densities  f,(x,r) and  f, (x,f). From here we finally get
(t=6(x)) fo(x,0) =1fy, (x,6 =5(x)) (for A itholds only in case of x <¢).
Let’s consider the function 07'(s)=b(s)=s" +5(s). As the CF

7i(2-y)

e = 7 has density p(x,7,2—7), it is easy to see that CF ") has

density ¢(x,7)=7"" p((x+8(r))r ™", 7,2~y). Then since
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(D(—.X,Z') =

B

n n LH
ii (-1)"(x=68(7)) F(nJrle‘ ’ gin F D)
Y n=0 n! 4 4
we have tf, (t,x) = x,(—x,t) .
Taking into account that p(—x,a,@)=p(x,c,—¢), from [4] (p. 659,
Lemma 1) we get
n+l
1 tr—x © (=D"(xFr) n+l) = . xn+l) T T,X
WP(—W ,J/,2—J/j=z( A ' ) F( jr 7 sin (n+D) _ 2ol ).
T T =0 yn! y y X
We formulate the above obtained results in the following lemma.
Lemma 2. The following relations are true:

foot)y=t(t+x) 7" pxt+x) 7,y =y, x>0, 0<t<o0;

t(t—x)"y"lp(x(t—x)"y,y"l,—y"l), 0<x<t<oo,
ft) =3t =07 " plx(x—0)7,y 3y =2), 0<t<x<oo, 4)
[ﬂ"((y—l)y'l)]_lxl/y, x=t>0;

fo(r,x)zxr_l_l/yp((ir—x)‘c_l/y,y,2—y), x>0,7>0;
i, (1, X) = xp, (—x,1) (1—5(x))f<>(x’t)=tf1/7(x,f—5(x))l-

Asymptotical expansions for f,(¢,x) can directly be obtained from

Lemma 2 and from the corresponding expansions of densities p(x,a,@) (see [6]).
2n

BZn

Let a,=a,(a)= [a(l —a)" H1-(1-a)™ ] be polynomials of

2n(2n)!
degree 2n—1 with absolute term equal to zero (B, are Bernoulli numbers) and
K K
] 1 n
Co (Vs Yyses V) = > n—(&J (y—”j be Bell polynomials.
ky+2ky .k, =n >0 Ky L, 1T n!

Denote:
b,(2)=C,(!a,2\a,,...,nla,)/n!, d,=d (9,0)=(a,(x)-Fa”'b, (2)F",
q,=9,(%,a)=C,(1d,,2\d,,...n\d ) /n! (polynomials of degree 2(n+1) by 9
and 2n by a). Let & =E(x,a) = (1—a)(x/a)”“™ and v=v(a)=(1-a) ™.
Theorem 3. For f,(t,x) the following expansions are true:

2y-1 Iy

L fynn)~ve™(t+x)7" %éz[HiQn(y'l)(yé'l)"j, when tx——>0,

—X

where & =E(x/(t+x) .y )= =Dy (rx/(t + ) v=v(1/y) = /(y -1 .

' The latter relation for A is true only for x <¢.
> From Theorem 3 the asymptotical expansions follow for f;(t,x) for cases when t=const and x—0,

t=const and x >, x=const and t -0, x+t—>00, x+t—0 itc.
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2y-1

2. fulet)~tve (@t -x) 7 ﬁéT [1 + iQn(y'l)(%'l)" j » when

Me-x)"L0, where &=¢ (x/(t —x) L,y ) — (=1 (}/x/(t Y )1/(1—y) ’

v=v(y H=(y/(r-D) .

yte  TyhxX™ . X
3. x,t)~—y ——————sin(wk(2—y)), when 70 and
Sy =y e S sin(ak(2 1) —
I<y<2.
4. fA(x,r)~Le-<x-”2/4x 1+§Qn(l)(8x(x—z)-2)" , when v 1o
N7x =l \2 t—x
and y=2.

1 < _ 2/2
Here Q =— f q,(e”"“dt, where ¢  are the above-defined
n 1271' J n n

polynomials of degree 2n with respect to o .

Theorem 4 (Unimodality). DF F,(¢,x) is unimodal.

The proof follows from (4). As the density p(x,y,y —2) 1is unimodal
(see [6]), then f,(¢,x) is also unimodal (since x does not break unimodality)'.
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U. [r. Uwpnhpnujui
[*huljkph mkunipjut vh vwhdwbwght pupudwt hwnlnipiniiibpp

Munidtwuhpdws b phulbph  whumpjul  npnp  wwhdwbuwghb
pinpbidutpnid wnwewgnn dh yuwnwhwlwb ypngkuh hwnlnipnibtkpp: Spyws
Eu Juynit pwppunidubtph b niuljghwikiph h nuuh htwn nitkguws Juybpp b
niuntdbiwuhpquws | uwyn puphudw wmuhdynnnhly quppp:

A. P. Mapmupocsan.

CRoiicTBa 0XHOT 0 NpeIeILHOT0 3AKOHA TEOPHH PHCKA

B pabote uccnenoBansl CBOWCTBA OHOTIO CIIy4ailHOTO MPOIIECCca, BOZHUKAO-
IIEro BO MHOTHUX NpeIelIbHBIX TeopeMax Teopuu pucka. J[aHbl CBSI3U C yCTOWYH-
BBIMM 3aKOHAMM M C OJTHUM KJIACCOM HMHTErpaJIbHBIX mpeoOpa3oBanuil. Mccneno-
BaHBI ACUMIITOTUYECKHUE CBOMCTBA ATOT0 3aKOHA.



