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The minimal number of systems of linear equations with » unknowns over a
finite field £, , such that the union of all solutions of the systems forms an exact

cover for a given subset in F,", is the complexity of a linearized covering. An
upper bound for the complexity for “almost all” subsets in F" is presented.
Keywords: finite fields, system of linear equations over finite fields, linearized

coverings.

Below F, stands for a finite field with g elements and F,' for an n-dimen-
sional linear space over F,. If L is a linear subspace in F and & e F,', then
theset a+L={a+x|xel} is a coset of the subspace L and its dimension

coincides with dimZ. An equivalent definition: a subset N qu" is a coset, if

m .
whenever ¥',%%,...,¥" arein N, so is any affine combination of them, i.e. > AKX
i=1

in F, such that ) 4, =1. It can be verified that any k -dimen-
i1

for any A4;,4,,...,4,

m

sional coset in F' is represented as a set of solutions of a certain system of

linear equations over F, of rank n—k and vice versa.

Definition 1. A set of cosets {H,,H,,...H,} in F) forms a linearized

covering of a subset N in Fq" ,if N=|JH, . The length of the covering is equal to
i=1

the number m of cosets. A linearized covering is the shortest for the given N, ifit

has the smallest possible length.

Definition 2. Let 7, be the number of subsets in £ that satisfy a certain

property IT. If limx, /27 =1, then we say that “almost all” subsets of Fq"

H—>00

satisfy the property IT.

*

E-mail: hovikn@gmail.com



42 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, Ne 2, p. 41-48.

The problem: for a given subset in Fq" (usually a set of solutions of a
polynomial equation with » unknowns over Fq) estimate the length of the

shortest linearized covering and find an effective algorithm that constructs the
shortest or “close” to the shortest linearized covering for N . This problem was
originally considered in [1, 2] for ¢g=2 in connection with minimization of
Boolean functions. It was shown in [3], that the length of the shortest covering
L,(N) for almost all subsets satisfies the following inequalities:
" 3
(l—gn)q—SLq(N)S(l—én)M

, where limeg, =1limg, =0.
2gnlog, n

2n10gq e n—w n—w

Our aim is to improve the upper bound with the help of techniques
developed in [4].
Theorem 1. Lq(N)<cq— for almost all subsets in F', where
n
c= g’ "e’(In2+1) ~18¢°2.
2In2

Denote by {Z} the Gaussian coefficient — the number of k-dimensional linear
q

subspaces in Fq,l. We use the following properties of the Gaussian coefficients:
{n} (@ =D =D (" - {n} _{ n } H |:n—r:| _{n} {k}
kl, (@ -D@"=D-(g-) k], n=k], Lr][n-k] [k]|r],
13 N _
and 3" gt n—k| |k _|m
=0 k —-r r k
q q q

Let D, stands for the set of all k -dimensional cosets in Fq" (obviously

|D,{|: q" L’j ), F(n) stands for the set of all subsets in F', and CK(n) — for

q

the set of all cosets in .

Theorem 1 is a result of Lemmas set out and proven below.

Definition 3. In a Boolean matrix 7'={t, ;} the j-th column covers the
i-th row, iff 7, =1.

Definition 4. A sequence of columns of a Boolean matrix a,,a,,...,a, is
gradient, if for every i=1,2,..,k the column g, covers the maximal possible
number of rows, which are not covered by the columns a,,a,,...,a, ;. The number

k is the length of a gradient sequence.
Denote the number of rows and columns in 7 by p(T) and ¢(T') respecti-

vely. Let L;(T), 6 >0, be the minimal number %, such that for any gradient se-

quence with length k& the portion of not covered rows in T is not greater than e .
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Lemma 1[4]. Let T be a submatrix in 7T, such that every row in T
is covered by not less than yq(T) columns, x>0, and p(T)>(-¢&)p(T),

€ €(0,1), then Lé(T)£§+1+ep(T).
X

Let a probability be defined on F(n), such that random variables (RVs)

I, XeN,

&)= {o, FeN,
distributed and P(&. =1)=2"".

Denote by y,(N) the number of k -dimensional cosets (0<k<n) in a

XeF/,NcF, are independent in aggregate, identically

random subset N, and by 1% (N) the number of such cosets H , for which ¥ e H
and H\Xc N. Below we calculate expectations and second moments for those

k

gk k 2 n—k n—r nr| 1 r 2
My =27 2 Lc r} L‘ r} ! L} (2111 _1)+(MW") ’
r=0 R L e q

Mng{l’j 27H4' D and M(n;f)z:z-mqk-” {” 3 {"_k H M
q -9 q

§ n
RVs. Basily verify My, =27 qn_k{ } ’
q

k| = k—r||r
Therefore,
2 gk k _m? I’l—k_ n—r ner n_ -
Dy, =(My, ) My} =27 z(:)q(k ) L{—r L{—r} K L (ZM _1)S
"= g q g

2
k r k 2 —k k k n
< 22g" n| T Y (k=r? | 1 P

2 2
k k Aqk
Dy, _ Sqn—kz—iq n qz(n-k)2-2¢1q n _ 2n_k ' ()
(M‘//k) k q k q q

Dn{f - kzﬂ.(q—l) q3k

Lemma 2 X< for k=|log n—log A—-6—-1|, 6 €(0,1).
S 7 [log, n—log, 2=6-1], 5&(0.1)
(=r)? n—k k Ad"
Proof. The sequence a, =¢ f 2% | 0<r<k, decreases, so
—-r r
q q

2
k2 aeadn| ] & <2y |1 <y 24g" | |
M) =2 . >a, <2 . (ay +ka)<2 . x

g0 q q

{n—k} {n—k}
2
qk -1 . k-1 q :2—2/1(qk || 1+k21(q—1) q(k—1)2 qk -1 . k-1 7 <
q-1 n k X qg-1 n
k k
q q

x| 14+£2207D g4
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2
S2-2A(qk_1) Hl’j ] (1+k2/1(q ) 3k —n) (Mn ) (1+k21(q—1)q3kq—n)'
q

2
k M 77? (g-1) 3k
Finally we have Dr; - = ( - )2 -1< k2 g
(aenz ) (aanc) ’

Definition 5. Let N ={a,,d,,....a,} and {H,H,,...H } be the set of all
cosets in N . We associate with N a Boolean matrix T =1{, ;},,,, such that

t,,=1,iff @ eH,. Let Ly(Ty)=L;(N) and ¢, (x)=x+|x|/2.

n

ne-A n
Lemma 3. M¢+(L5(N)—q2+515q 2 JS 9 for A>1, 5¢e(0,1).

n n log; n
Dy, Z
Proof. Suppose k=|log, n—log, A-6-1|. By (¥), ——5 <——. Thus,
[ ! ! :I (MWk) q g
Dy g . —n[l— 11 J+1og,,n 1
for large n o< - g %" = qlog2q <—.
My,) q n

For a random subset N using Chebyshev’s inequality we obtain

e 2 o)

PUWO _qnz_i‘Z%anAj:P(h//o _MW0|2MW0)SL<H_ZL' 2)

Denote by 7, a submatrix in 7, , formed by columns that correspond to
k -dimensional cosets in N, and rows in N, which are covered by not less than

1| n k . . . .
S, z(l——sj{k} 2744k _dimensional cosets in N . Using Lemma 2 we can
n
q

estimate

M(p(TN)—p(TN,k))=2—L\{(5,N)|5cezv; n,f:(m<so}\=?\{£|Scef;,,;n§(m<so} x

p 1
x27' 27 =q"2“P(n§ <(1——8)Mn§:js q"Z“PUnﬁf - Mn{

D {c Ag— 1) 3k
Sqnz—i r]x 2 n2 A k2

1 q"
(8 Mnt
n

Z%Mn;‘js
n

i :kzi(q—2)q3kn16. )
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Let A" be a subset of F(n), such that for each N e A" the following

. . £ 1
inequalities hold: q(TN!K)S(1+L4jq""k L’j 27M ‘p(TN)—q"T/l £—4q"2_i,
n n

p(TN)—p(TN,k)Sp(TN)’%.

Suppose that N, e F(n)\ A" and at least one of the below inequa-
1

lities  holds: q(TNO,K)>(1+L4jq"‘k{n} z—iqk, ‘P(TNO)_‘]Q_A >—4q"2'i,
n k . n
1
p(TND)—p(TND,k)>p(TND)n—3.

Due to (). . y,(NM=q(Ty,). v,(N)=p(y). we obtain

1Y el i 1 e 1, 1
P(l//k>(1+—4jq k{k} 27 J<—4 and PUl//O—q 2 A‘>—4q 2 Aj<—4 for
n . n n n

the first two above inequalities. If the third inequality holds, but first two do not,
then using Chebyshev’s inequality and (3) we can estimate

1) Mp@y)-p(Ty, ) _ k242 g n' 1
P(p(TNO)_p(TND,k)>p(TNo)n_3j< Ny : ];/0 < 1 q n3<n_3’
(p(TN )3j (1—4jq"2‘1
0 n n

and, thus, P(F(n)\A”)< n’. Obviously, for any NeA" T, meets

the conditions of Lemma 1, thus, Lg(N)< (5 / Z) +1+¢ep(N), where

" 1) 2 " 1 N
<5q7 29 [1+_2j+_3qn2_1 <62 +q' 2 = <6 A L
n n n n n n n~ 2
and
nn~—A n n
q"2 1 g 0 a1 q i Lo
M¢+[L5(N)—q2+%57]s?7pm )+P(F(n)\ A")q s;-;P(A )+n—3q =
n P(An) 1 n n
_9 q q :
= +— | <75 <————. This completes the proof.
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As in [4] we split the set of coordinates X of vectors in Fq,, into non-

intersecting subsets X = X' U...u X UY, such that

‘Xi‘:m, i=Lk, k=[log,n], m{lo; n}
q

Let v; be an operator that associates with each N < F, aset of cosets in

N that being taken in a certain order forms a gradient sequence, satisfying the

condition that the fraction of uncovered rows does not exceed ¢, and removal of
the last member of this sequence breaches the condition.
For each subset Nqu,, we define a sequence of subsets N;.,N,,...,N, in

the following way:
1) Ny=N;

2) suppose that N, | (i<k) isalready constructed and N/, j=1,...,¢" ™, are
subsets obtained from N, , by fixing the coordinates that are not in X' in all vectors

in N, . We set vi(N)=v;(N',)U...00s(NY,"). Then, N ,=N,  \vi(N). Denote

k .
by v*(N) the longest gradient sequence for N, w-and L) s(N)= Yvs (Vv vF(N).

i=1

for A>1,8>1-In2.

32 n n
Aln2+1
Lemma 4. M(0+[LU,5—qe 9 p»ZNoT j 9

<

24" n In2 nlog, n
Proof. Consider the i-th step of above construction scheme. Without a loss
of generality we may assume that X' = {1,2,...,m} , and all vectors in N/, are of the

form (x,...,x,,0y,..,0, ), where o, €F,, k=lLn—m. Define the following
distribution on F(m): P;({G})=P({N|N/, =G}).
The RVs &, for each of the above distributions are independent in aggregate

and identically distributed. Let P, (&; =1)= 27, J=Leuqg"", % ,;>0. Accor-

. . - | ERS e
ding to the above construction scheme P(¥e N,_|)=—>2 &z , where s=¢"™".
S j=1
On the other hand, all the vectors, which were covered with gradient
sequence in the previous step, are not in N,,, and the fraction of unco-

vered rtows cannot exceed e; therefore, P(¥eN,,)<e’“P27* and
1i2—i- —5(i-1) m=1 _ m—A-3(i~1)log, e

- W <e 274 =2 82¢

S j=1

Consequently, due to convexity, we state that

12 27h g, <20 () 4 §5(i - 1)log, e) = e 00D %(5(;’ ~1)+2ln2).
S j=1 n

Denoting t=56(i—1)+ AIn2, we have
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1S -4 |
—N»2 ) <Lelt—. 4
sjzzl " In2 @
o tid S+1)(t+1
As ¢®>85+1, we have £ j xe'xdee"(( ;( )—t+g+1j:e"t. And
t
combining with (4), we obtain
s Pl e5 t+d
27 <s——— | xe “dx. 5
]Z:‘T " 2 s ! )

As per construction of the operator v;, we can state that‘z)& (Z\fij_l)‘SL(S (Nij_l)

Vi=1,k and V)= 1,_s . By Lemma 4 we have

j 245 q" s ' 245 qmz_&’/ q"
Mo, | o, (NL)| -4, ;6 <Mg, | Ly(NL)=q""% ;0 <1
m m mlog, m
A s mz_li,f m n
Adding up over j Mg, U;‘—Zq%éiiﬁq <54 —= q —.
=1 ’ m mlog, m mlog, m
n S Si+Aln2 n
Due to (5), Me, U(’;‘—q2+5q—~e— xe “dx Sq—z or
m 25,05 5 mlog, m
k ) n S Sk+Aln2 n
Mo, (Z‘Ufg‘—q2+6q_'e_ xe"xdeﬁ kq—z. (6)
= m In2 ;, mlog, m
Obviously,
Sk+Aln2 o
xe“de< [ xedx=2"(AIn2+1). (7
2In2 Aln2

Taking into account the fact that for any set the length of a gradient sequence
cannot be greater than the cardinality of the set, we estimate

.
M‘uk‘£ZP(ieNk)Sq"TAe_‘sk. (8)
j=1
Combining (6)—(8), we obtain

nn-A n
M(D+ Lug_q2+565q 2 /11112"1‘1 Sk q .
’ m In2 mlog, m

+ qn 2—& e—&k'

Consequently, as m~n, log m~log n, k~log n when n—oo, and taking

0 =1-In2, we prove the Lemma.
Proof of Theorem 1. Choosing A =1 in Lemma 4, we have

32 n n
M@(Luﬁ_qe q_.ln2+1j< q

4™ 0 2 ) nlog,n’
32 n n
We define A(n)= 9 162 4" In2+1 and B(n)= 9 Then lim B(”)zo.
4" n In2 nlog, n n—o A(n)

Using Chebyshev’s inequality, we get
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M(Ly5—Am) Mo (L,;—A(M) _B(n)
An) - A(n) T Ay

We come to a conclusion that P(Lu,§ —2A4A(n)2 O) tends to 0, whenever n — o,

P(L, 5 —2A(n)20)=P(L, 5 — A(n) > A(n)) <

thus, for almost all subsets in Fq" L, s <2A(n), so we come to the statement of

Theorem 1.
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2. 8. Uniphowiyub
Qéuyiugynn sSwsynyputph puppnipyu yiphtt vwhdwbp JEpewdnp nupwnnid

£/ dtpewynp  nupnh  dpw wpjws  hninjuwlubibkph - gdwyhb
hwjuwuwpnidubph hwdwlwupgbph wjuqugnyb pwbwlp, npntg (msnidubph
dhwynpnidp hwimhuwimd b &qphin swsynype -nid mpjus tupwpuqunipiub
hwdwp, Yngynid b qdbuytimgynn Swdlinyph pwppmpnil Usfuwwnwbpnid
ubkpuyugws t wyn puppmpyut Jkpht vwhdwip qduyhlt mwpwdnipub
“hwdwipyw pojnp” Eipwpuqunipniitph hwdwnp:

O. K. Hypup:xanss.

BepxHsisi rpaHuNA C10:KHOCTH JIMHeAPU3yeMbIX NOKPBITHI B KOHEYHOM I0J1e

MuHHUMaIIbHOE  KOJIMYECTBO CHCTEM JIMHEHHBIX HAJl KOHEYHBIM moneMm F
YpaBHEHHH OT 7 TEpeMEHHBIX, 00bEeINHEHHE PEelIeHHH KOTOPBIX 00pa3yeT TOYHOe
TIOKPBITHE /Ul TAHHOTO B F,' MOJIMHOXECTBA, HA3bIBAETCS CIIOKHOCTBIO JTUHEAPH3H-
POBaHHOTO TOKPHITUSL. B HacTosiiell cTtaTbe Mbl MPEACTABIAEM BEPXHIOK T'PAHUILY
STOM CIOKHOCTH TSI “TIOYTH BCEX TMOAMHOKECTB JIMHEUHOrO TIPOCTpaHCcTBa F q" .



