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In the present article the first order linear differential operators with 
unbounded coefficients are investigated. The boundedness of the operators under 
consideration was proved. 
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Let   be a bounded domain with smooth boundary  
Consider the first order differential expression  

,nQ R⊂ 2,n ≥ 1.Q C∂ ∈

( ( ), ( )) ( ( ) ( )) ( ) ( ),Tu b x u x div c x u x d x u x≡ ∇ − +     1
2 ( ),u W Q∈
D

with coefficients (1) ( )( ) ( ( ),..., ( )),nb x b x b x=  (1) ( )( ) ( ( ),..., ( ))nc x c x c x=  and  that 
are measurable and bounded on each strong inner subdomain of the domain  . 

( )d x
Q

For an arbitrary   define  1
2, (u v W Q∈
D

)

, (( ( ), ( )) ( ) ( ( ) ( ), ( )) ( ) ( ) ( ))
Q

Tu v b x u x v x c x u x v x d x u x v x d〈 〉 ≡ ∇ + ∇ +∫ x . 

The aim of this article is to obtain conditions to be imposed on the 
coefficients ( ), ( )b x c x  and , for which T  is a linear bounded operator acting 

from  into . This property has important applications in studying 
the problems of mathematical physics (see, for example, [1, 2]).        

( )d x

1
2 ( )W Q
D

1
2 ( )W Q−
D

The following theorem is proved. 
Theo r em .   Let the following conditions hold 

                                        1( )
( )

b x O
r x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 as ,                                       (1) ( ) 0r x →

where  is the distance of a point ( )r x Qx∈  from  the boundary Q∂ , 

                                 2

0
( )tC t dt < ∞∫ ,  where 

( )
( ) sup ( )

r x t
C t ,                              (2) c x

≥
=

                                 3 2

0
( )t D t dt < ∞∫ ,  where 

( )
( ) sup ( )

r x t
D t d x

≥
= .                           (3) 
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Then the operator T  is a bounded linear operator from   into . 1
2 ( )W Q
D

1
2 ( )W Q−
D

Proof of Theorem.  Let 0x Q∈∂  be an arbitrary point of the boundary  of 
the domain  , 

Q∂

Q ( ', )nx x  be a local coordinate system with the origin  0x  and the 
 directed along the inner normal axisnx 0( )xν  to Q∂  at the point 0x . Since , 

there exists a positive number   and a function 

1Q C∂ ∈

0 0xr > 0
1 1( n

x C Rϕ )−∈  with properties 

0 (0) 0xϕ = , 0 (0) 0xϕ∇ =  and 0

1( ')
2x xϕ∇ ≤  for all 1' nx R −∈ , 

such that the intersection of the domain Q  with the ball 0
00

( ) 0{ : }x
r

xx
U x x x r= − <  of 

radius 0xr  and the centre 0x  has the form  . 

Then . Let 

0 0
00 0

( ) ( )
{( ', ) : ( ')}x x

r r
n n xx x

Q U U x x x xϕ= >∩ ∩

0 0
00 0

( ) ( )
{( ', ) : ( ')}x x

r r
n n xx x

Q U U x x x xϕ∂ = =∩ ∩
0

0

2
x

x

r
l = . From the covering 

 of the boundary 0
0

( ) 0{ ,x
l

x
U x Q∈∂ } Q∂  select a finite subcovering , . 

Denote for simplicity U y mU m

( )mx
m

l

x
U 1,...,m p=

( )mx
m

l

x
 b , xr  by mr ,  m xl by ml m ,  xϕ  b  my ϕ , 1,...,= . m p

Now set 1
1 2
3 25

2 min( ,..., )ph r r⎟⎟
⎝ ⎠

. Then each of⎛ ⎞
= −⎜⎜  the curvilinear “cylinders “ 

, {( ', ) : ' , ( ') ( ') }ml h
m n m m n mx x x l x x x hϕ ϕΠ = < < < + , 1,...,m p= , 

is contained in the corresponding ball , as well as in Q  (recall that  mU mU ∩
( ' )nx x,  are  the coordinates of a point in cal system of coordinates with origin a lo
at mx ). Let 0l h<  be a positive number such that the complement of the domain 

0{ : dist( , ) }lQ x Q x Q l= ∂ >  in Q  is contained in the union of the ”cylin-
0

( )r x= ∈

ders” ,ml h
mΠ , 1,...,m p= ,  i.e. ( ) dist( , ) } ml l

m
m

Q x Q r x x Q l
=

= ∈ = ∂ ≤ ⊂ Π∪ . 

It is easily verified that for all 

0 ,
0

1
{ :

p
h

,( ', ) ml h
n mx x x= ∈Π , 1,..., ,m p=   

5( ) ( ') ( )
2n mr x x x r xϕ≤ − ≤ . 

Now fix some number ,m  1 m p≤ ≤ , and take a local coordinate system 
with origin at mx . 

We defi   m  of the space nRne appings  and L 1L−  onto itself using relations 
L x( ) ( ', ( '))n mx x xϕ= − , where ( ', )nx x x=  and 1( ) ( ', ( '))n mL y y y y ϕ− = + ,  

 of ,ml h
mΠ  und ping ( ', )ny y y= . The image er the map L  will be denoted by ,ml h

mΠ� :  

( ), ,m ml h l h
m mL Π =Π�  . 

Now take arbitrary functions  and  and make the 
notati

1
2 ( )u W Q∈
D

0 ( )C Qη ∞∈
ons ( ', ( ')) ( )nu y y y u yϕ+ = � ,  ( ')) (y ', ( )ny y yη ϕ η+ = � . 
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In v weiew of  (1), (2) and (3)  have 
( ) ( )

( ( ))
u x x

K dx C r x u
η

η
∇

≤ +∫ ∫, ( ) ( ) ( ( )) ( ) ( )
( )Q Q Q

Tu x x dx D r x u x x dx
r x

η η∇ + ∫ ,  

where is a constant. 
e

K
L t us estimate   

0
0

1
0

( )u x
I

η η∇
= ∫

( ) ( ) ( ) 1 ( ) ( )
( ) ( )l

lQ QQ

x u x x
dx dx u x x dx

r x r x l
η

∇
≤ + ∇ ≤∫ ∫  

1 1
2 2,

( ) ( )
1 0

( ) ( ) 1
( )l hm

m

p

W Q W Q
m

u x x
dx u

r x l
η

η
= Π

∇
≤ +∑ ∫ D D . 

For  1,...,m p=  the following estimate holds:  

, , , ,

1/2 1/2
2

2
2

( ) ( ) ( )5 5u x u y y ⎛∇ ��( ) ( )( )
( ) 2 2l h l h l h l hm m m m

m m m mn n

x ydx dy u y dy dy
r x y y

η η η

Π Π Π Π

⎞ ⎛ ⎞∇
⎜ ⎟ ⎜ ⎟≤ ≤ ∇ ≤
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫
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��

1 1
2 2, ,

1/ 2 1/ 2
2

2
2 ( ) ( )
( )5 ( ) const

l h l hm m
m m

W Q W Q
n

yu x dx dy u
y

η η
Π Π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≤ ∇ ≤
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫ D D

�

�
. 

We used here the Hardy inequality (see, for example, [3]), in virtue of which  

, ,

22
2( ', )( ) ' const ( )

h
ny yy dy dy dy y dyηη η= ≤ ∇∫ ∫ ∫ ∫

�� � . 2 2
0 'l h l hm mmm m

n
y ln ny y<Π Π� �

 Thus,  
                           1 1

2 2
1 ( ) ( )const W Q W QI u η≤ D D                  ,                                         (4) 

epend on  and where the constant does not d u η .  Next,                

0
0

2 0( ( )) ( ) ( ) ( ( ( ) ( ) ( )I C r x u x x dx C r x u x x dx C lη η= ∇ ≤ +∫ ∫ ∫)) ( ) ( )
l

lQ QQ

u x x dxη∇ ∇ ≤

1 1
2 2,

0 ( ) ( )
1

( ( )) ( ) ( ) ( )
l hm
m

p

W Q W Q
m

C r x u x x dx C l uη η
= Π

≤ ∇ +∑ ∫ D D . 

For  we have  1,...,m p=

1
2, ,

1/ 2

2 2
( )( ( )) ( ) ( ) ( ( )) ( )

l h l hm m
m m

W QC r x u x x dx C r x u x dxη η
Π Π

⎛ ⎞
⎜ ⎟∇ ≤
⎜ ⎟
⎝ ⎠

∫ ∫ D  ≤

1 1
2 2, ,

1/2 1/2
22 2 2

( ) ( )
0

2 2( ) ( ', )
5 5

n

l h l hm m
m m

y

n n nW Q W QC y u y dy C y y u y d dyη τ
Π Π

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟≤ ≤ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ ∫ ∫D D

� �
� � τ η ≤

1
2'

1/ 2

22
( )

0 0

2 ' ( ', )
5

m

h h

n n n W Q
y l

dy C y y dy d u yτ τ η
<

⎛ ⎞⎛ ⎞⎜ ⎟≤ ∇⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫ ∫ D�  ≤

1 1
2 2

1/ 2
2

( ) ( )
0

22
5

h

n n n W Q W QC y y dy u η
⎛ ⎞⎛ ⎞
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⎝ ⎠⎝ ⎠

∫ D D . 
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Thus, we obtain  
                                              1 1

2 2
2 ( ) ( )const W Q W QI u η≤ D D ,                                        (5) 

where not depend on  and u η .  the constant does 
Similarly we obtain 

0
3 ( ( )) ( ) ( ) ( ( ) ( )

lQ Q

I D r x u x x dx D r x u xη η= ≤∫ ∫
0

0) ( )
lQ
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p
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Finally, for  we have 1,...,m p=
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m
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�
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1 1
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1/ 2
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0
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5

h

n n n W Q W QD y y dy u η
⎛ ⎞⎛ ⎞
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⎝ ⎠⎝ ⎠
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 Thus, 
                                                 1 1

2 2
3 ( ) ( )const W Q W QI u η≤ D D ,                                 (6) 

dependent of  and 

    

u η . where the constant is in
Therefore, in view lowing estimate holds of (4)–(6) the fol

1 1
2 2( ) ( ), const W Q W QTu u , where the consη η≤ D D ndent of u  and tant is indepe η . 

Since the functions  ( )xη   from  0 ( )C Q∞  are dense everywhere in  1
2 ( )W Q
D

, the proof 
llows from the established estimate. The Theorem  
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