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ON SOME SINGULAR INTEGRAL EQUATIONS ON THE SEMI-AXIS

V. V. SIMONYAN"*
Chair of Differential Equations and Functional Analysis, YSU

In this paper the non-characteristic singular integral equations on the semi-
axis are discussed. The solution of these equations is reduced to the solution of
one-dimensional pseudo-differential equations. Some examples of singular
equations for which explicit solutions exist are provided.
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1% Let R be a two-point compactification of R =(—o0,+0) and C (ﬁ) -
the Banach algebra of all complex valued continuous function on R. What
follows, p( z) =z (—1 <fp< 1) is understood as the branch of this function that is
analytical in (C\(—oo,O) and assumes positive values on the positive semi-axis
R, = (0,+oo) . Let 25 be a subalgebra of all linear bounded operators acting from
and to the weighted space L, (R.,p), generated by operators / and S; , where
Sy, 18 a singular integral operator acting along R, :

1 Ty(r
(SKy)(x) :E _([ gdr .
Here the integral is perceived in terms of the main value. The notation F means
the following Fourier transform:

~ 1 +00 .
(F)(£)=7(¢)=5- [ ¥ r(x)dr (vely(R).E<R),
and y is the operator continuously reflecting L,(R,,p) in L,(R) according to

formula (yy)(x)=e"y(e*), where a >0, 0=a(,b’+1)/2 and s=o+id. Itis

not difficult to ascertain that the operator » 'F is the Mellin transform.

Below the multiplicative operator by function u is denoted as A, (i.e.
A,y =uy ). For any function a e C (@) the operator K, =y 'F A F'y belongs to
algebra X; (see, e.g., [1, 2]).
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As is well known, the characteristic equation (Aa+S]R+Ab) y=f

( y.fel, (R o p)) admits the explicit solution [3]. The present paper is devoted to

— N
the investigation of “difficult” singular integral operators of a type K = > K oA,
m=l

((pm € C(@),l//m eL, (R, )) , acting from L, (R, p) to itself.
Let H,(R) (r>0) be Sobolev-Slobodetski spaces of the generalized
functions u, the Fourier transform # of which belongs to L, (R,(H | x |)r) space.

Following [4], the class of locally integrable functions 4 on R, complying to
condition |A(§)| < c(l + |§|)r , is denoted as S .

Let ,(x) =(1+‘0[1 1nx‘)r (xeR,) and functions v, eL,(R,) (i=1...,N).
Now determine the functions 4, =y, I, 4,=(y, /)4, (m=1,..,N) on R,
where /(x)=e™ (xeR). It follows from here that w,=4,oh and
v, =(4,°h)y," (m=1..,N), where h(x)=c'lnx when xeR,. It is
obvious that 4, €S’ forall m=0,...,N .

N
Let us consider a operator A(x,D) with a symbol 4(x,t)=3 ¢, (x)4,(1):

m=1

A(x.D)u= | & A(x.t)i(c)dr

—00

N
Since A(x,D)u= 24, 4, (D)u, then for r>0 the reflection A(x,D)
m=l

may be prolonged till the continuous reflection from H, (R) to L, (R)(see [4]).

Below the solution of “difficult” equation Kz= g is reduced to a pseudo-
differential equation A(x,D) y = f for some f . The examples of “difficult” singu-
lar integral equations investigated based on this relationship are provided.

2° Let Xl.(i =1,...,4) be linear spaces on the field of complex numbers,
o: X =X, w,:X,>X,, o,:X,>X;, o,:X,—> X, are linear reflections
and @, is an invertible reflection. Let us consider the linear reflections

T:X,>X,®X,, K:X, > X, ®X,,
A4, X, ®X, 5> X,®X,, 4, :X,>X,,

4, X, ®X, > X,, B, X,®X, > X,,
B,:X, > X,, By X,®X, > X, ®X,,

determined by equations

Iy +w0, y -0, 0
- o0, | 2o Iy, |
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Azlz[—a)gla)z], Azzz[a);1 O], B“=[1X2 OJ, B12=[a)la)4]’

10) 0 w, + 0,00,
B, = p) K= 4 WO, ‘
0 IX3 0,0,

By means of direct calculations it is easy to make sure of the validity of equality

-1
{ r A12:| :{Bn Blz}
4, 4y B, K

Based on this equality and results of [5] the following statement is derived.
Assignment 1. 1f K" is pseudo-inverse of K , then the reflection
ey =B _BlzK(il)le
is pseudo-inverse of 7' . Similarly, if 7" is pseudo-inverse of 7', then
K= Ay - A21T(_1)A12
is pseudo-inverse of K . Spaces Ker7 and KerK are isomorphic. Besides, the
following equalities are valid:

KerT = B, KerK, KerK = 4, KerT7,
Im7 =B,/ ImK, ImK =4, ImT.
3. Let M, (R) be some direct addition to the linear space H,(R) in
L,(R) space, and
7L, (R)>H, (R), 7,:L,(R)—> M, (R)
are projection operators that are related by the ratio
my+my=y, yeLz(R).
Let us determine a space W:{le//(;'feL2 (R+,p)}. Then, apply the

Assignment 1 for spaces
X, =L(R,,p), X,=H,(R), X;=M,(R), X, =W

and operators

N
o=mF "y, o= Z‘IK% y'FA,(D)-y"'F, o,=m,F 'y, o= A,

By using the equality F_I;/K(pn y'F = A4, (m = l,...,N) it is easy to ascer-
tain that the operator 7' acting from H, (R) to L, (R) coincides with A(x,D).
Lemma 1. Let

f=(7.0)eL,(R,,p)®M,(R).
The function z is the solution of equation Kz = f,iff ze L, (]R+, p) and Kz = f .
Proof. Let z be the solution of equation Kz = f, that is
a)4z+a)2wla)42=f, w,0,z=0. (1)
First prove that zelL, (R s p). Really, from the second equation of (1) it
follows that g= F_ly/lwlz eH, (R) . Consequently, yz=F4, (D)g el, (R) ,
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that is zelL,(R,,p). Note now that from (1) it also follows that
x F! ;//1%,1 z=F"" }/AW1 z . From the first equation of (1) it follows that Kz = f .
Let ze L, (R+,p) and Kz= f . From equality F_l}//l%,]z =4 (D)F_lyz
it follows that
w,0,z=0.
Since Kz = f , we have

N N N
(ZK%AWM jz :(ZK%AAmohAwﬂl jz :[/1%1 +| DK, Ay —1)/1%[ jz -

m=1 m=1 m=1

(4.4

N
= ( A (Z K, y"'FA,(D)-y"'F ;le‘lyAW Jz =

m=1

M=

Pm

K, y'FA (D)-y'F F_I;/Ay/,l Jzz

1

3
1l

= (0, + 0,0,0,)z = f.
Thus, the equalities are correct, that is Kz = f . The proof is completed.
Theorem 1. To ensure that function z € L,(R,, p) satisfies the equation

N
> K, A, z=g(geL(R,.p)), @)
m=1
it is necessary and sufficient that function y=F ‘17/Ay/,1 z satisfy the equation
A(x,D)y=F'yg(F'yge L,(R)). 3)
Proof. Let the function z€ L, (]R v p) be a solution of equation (2). Acting
by operator F~'y on both the parts of the equation (2) (it is feasible, since the

functions y,, (m=1,...,N)are bounded), we obtain

N
ZF_I}/Kq)mAAmchAWO’]Z :F_lyg .

m=1

Taking into  account the equalities A, , = 7’1FAm (D)F'y and
FyK, y'F=A, (m=1,..,N),we find

N
> A, 4,(D)y=F"yg.

m=1

Earlier, it has been shown that y = F ™' )//11//,1 zeH,(R) (see the proof of Lemma 1).

Vice versa, now let the function y € H, (R) be the solution of equation (3). Then it

is true that z = /l,yoj/_le eL,(R,,p), the proof of which is provided in Lemma 1.

At the insertion of y=F"' 7Ar//’1 z into (3), we have

N
> A, 4,(D)F YA,z = Flyg.
m=1
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Taking into account the equality 4, =F yK ” y'F (m=1,...,N), we obtain

N
Y 'YK, 7 FA,(DF'yA 2= Fyg. @)

m=1

Acting by operator »'F on both the parts of equality (4), we find
N
-1 -1 _
Z‘IK%;/ FA,(D)F yAWalz =g.
By wusing equality y’lFAm (D)F 'y = Ay (m=1..,N), we find that
N
> K 4, z=g,1e. the function z is the solution of equation (2).
m=1
The Theorem is proved.

)
4% In case of N=2, @ (x)=1 and (pz(x):{Chz(x_iji%H h
a

. 1 +00 1 _1

Now, let us highlight two examples.

Example 1. Let Al(f)z—éz —ﬂ—j, A, (§)=2ﬂ—z and 7 =2, then we have
a a
A(st)y(X)=y"(x)+ﬂ_z{2{0h£(x_§+i%ﬂ_ _IJ*”(X),
a a 2
-1 2 2/ 2
- - \ - +0 —
Re() = (a nx) irz/a z(x)+% z(¢&) 2_lnf lnxdé:'
(1+‘a711nx‘) @ o (1+‘af1 lné‘) g-x

Taking into account that functions
i I - iﬁ - T 27 x- [a—ﬂ B
v (x)=e” [H—ez“( : 2)} . »(x)=e« [1+e2”’( a ZJ:I

are solutions of equation A(x,D) v =0 from class H, (R) , We obtain according to
the Assignment 1 that functions z, (x)=-w, @,y, (x) (k=1,2) are the basis of

KerK .
Example 2. Let A4 (&)=-aji+a,, A4,(&)=bié—b, and r=1, where

a,,a,,b,,b, € C, then we find

A(x.D) y(x)=[a1_bl[chﬂx_gﬂ%ﬂﬂjyv(x){% b {chg(x—fﬂ%ﬁﬂ_z]y(x),

400

~ —ajia” Inx+a ~bia'nE+b, Iné—Inx
Kz(x): 11 ‘ — - z(x)——zj ! — . —Z
+|a lnx‘ o 1+‘a lnf‘ E—x

($)ds.
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Taking into account that the only solution of equation A(x,D)y(x)=0 does not
belong to class L, (]R), we obtain that equation 1~<z(x):0 does not have any

solutions from L, (R,, p).
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