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In this paper the non-characteristic singular integral equations on the semi-
axis are discussed. The solution of these equations is reduced to the solution of 
one-dimensional pseudo-differential equations. Some examples of singular 
equations for which explicit solutions exist are provided. 
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10. Let   be a two-point compactification of ( ),= −∞ +∞  and ( )C  – 

the  Banach algebra of all complex valued continuous function on . What 
follows, ( )z zβρ =  ( )1 β− < <1

)
 is understood as the branch of this function that is 

analytical in  and assumes positive values on the positive semi-axis (\ ,0−∞

( )0,+ ∞= + . Let βΣ  be a subalgebra of all linear bounded operators acting from 

and to the weighted space ( )2 ,L ρ+ , generated by operators  and , where 
 is a singular integral operator acting along 

I S
+

S
+ + : 

( )( ) ( )
0

1 y
S y x d

i x
τ

τ
π τ+

+∞

−
= ∫ . 

Here the integral is perceived in terms of the main value. The notation F  means 
the following Fourier transform:  

( )( ) ( ) ( ) ( )( )2
1 ,

2
ixFy y y x de Lx yξξ ξ ξ

π

+∞

−∞

∈= ∈= ∫ , 

and γ  is the operator continuously reflecting 2 ( ,L )ρ+  in  according to 
formula  

2 ( )L
( )( )) (sx xey yx eαγ = , where 0α > , ( )1 / 2σ α β= +  and s iσ ζ= + . It is 

not difficult to ascertain that the operator 1Fγ −  is the Mellin transform. 
Below the multiplicative operator by function  is denoted as (i.e. 

). For any function 

u uΛ

u y uyΛ = ( )a C∈  the operator 1
a aK F F 1γ Λ− −= γ  belongs to 

algebra βΣ  (see, e.g., [1, 2]). 
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As is well known, the characteristic equation ( )ba S yΛ Λ
+

f+ =  

( )( )2,y Lf ,ρ+∈  admits the explicit solution [3]. The present paper is devoted to 

the investigation of “difficult” singular integral operators of a type 
1

m m

N

m
K Kϕ ψΛ

=
= ∑  

( ) ( )( ),m mC Lϕ ψ ∞ +∈ ∈ , acting from ( )2 ,L ρ+  to itself. 

Let ( )rH   be Sobolev–Slobodetski spaces of the generalized 

functions , the Fourier transform  of which belongs to 

( 0r ≥ )
u û ( )( )2 , 1 | | rL x+  space. 

Following [4], the class of locally integrable functions A  on , complying to 
condition ( ) (1 r

A c )ξ ξ≤ + , is denoted as . 0
rS

Let ( ) ( )1
0 1 ln

r
x xψ α−= + ( )x +∈  and functions ( )i Lψ ∞ +∈  ( ), ,1i N= … . 

Now determine the functions 0 0 ,A lψ=  ( ) ( )0 1 ,,m mA Nl A mψ = …=  on , 

where ( ) xl x eα=  . It follows from here that (x∈ ) 0 0A hψ =  and 

( ) 1
0m m hAψ ψ −=  ( ), ,1m N= … , where ( ) 1 lnh x xα−=  when . It is 

obvious that  for all 

x +∈
0

mA ∈Sr , ,0m N= … . 

Let us consider a operator ( ),A x D  with a symbol ( ) ( ) (
1

, m
m

m

N
)A x t x A tϕ

=
= ∑ :  

( ) ( ) ( )ˆ, ,ixtA x D u e A x t u t dt−

−

∞

∞

= ∫ .  

Since ( ) ( )
1

,
m

N

m
mA x D u A D uϕΛ

=
= ∑ , then for  the reflection 0r ≥ ( ),A x D  

may be prolonged till the continuous reflection from  ( )rH  to ( )2L (see [4]). 

Below the solution of “difficult” equation Kz g=  is reduced to a pseudo-
differential equation ( ),A x D y f= for some f . The examples of “difficult” singu-
lar integral equations investigated based on this relationship are provided. 

20. Let ( )1, ,4iX i = …  be linear spaces on the field of complex numbers, 

1 1 2 2 2 1 3 1 3 4 4: , : , : , :X X XX X 1X X Xω ω ω ω→ → → →  are linear reflections 
and 4ω  is an invertible reflection. Let us consider the linear reflections  

2 2 3 4 3
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determined by equations  

2

3

1 2 1
12

33 2

0
, ,X

X
A

I
T

I
ωω ω

ωω ω

+ −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2011, № 1, p.12–17.  
  
14 

[ ]
2

1 1
21 4 2 22 4 11 12 1 4, 0 , 0 ,XA BA I B ,ω ω ω ω− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = = =⎣ ⎦⎣ ⎦ ⎣ ⎦ ω  
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0
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0
.

X
B

I
K

ω ω ω ωω
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By means of direct calculations it is easy to make sure of the validity of equality 

12 11 12

21 22 2

1

1
.

T A B B
A A B K

−
⎡ ⎤ ⎡

=⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 

Based on this equality and results of [5] the following statement is derived. 
Assignment 1.  If  is  pseudo-inverse of , then the reflection ( 1)K − K

( 1) ( 1)
11 12 21T B B K B− −= −  

is pseudo-inverse of T . Similarly, if ( 1)T − is pseudo-inverse of T , then 
( 1) ( 1)

22 21 12K A A T− −= − A  
is pseudo-inverse of . Spaces  and are isomorphic. Besides, the 
following equalities are valid: 

K KerT KerK

12 2
1 1

12

1

21

Ker Ker , Ker Ker ,

Im Im , Im Im .

T B K K A T

T B K K A T− −

= =

= =
 

30. Let ( )rM  be some direct addition to the linear space  in ( )rH
( )2L  space, and  

( ) ( )1 2: ,rLπ →H  ( ) ( )2 2: rLπ →M  
are projection operators that are related by the ratio  

( )1 2 ,y y y 2 .y L∈

)
 π +π =  

Let us determine a space ({ }1
0 2: fW f L ,ψ ρ−

+∈= . Then, apply the 

Assignment 1 for spaces  
( )1 2 , ,X L ρ+=  ( )2 ,rX =H  ( )3 ,rX =M 4X W=  

and operators  
1

1 1 ,Fω π γ−=  ( )
1

1 1
2 ,

m m

N

m
FA DK Fϕω γ γ

=

− −= −∑  1
3 2 ,Fω π γ−=  1

0
4 .ψω Λ −=  

By using the equality 1 1
m m

F K Fϕ ϕγ γ Λ− − = ( ), ,1m N= …  it is easy to ascer-

tain that the operator T  acting from ( )rH  to ( )2L  coincides  with ( ),A x D . 
L e m m a  1 .  Let  

( ) ( ) (20 ,, rLf f ρ+∈= ⊕M ).  
The function  is the solution of equation z Kz f= , iff ( )2 ,z L ρ+∈  and . Kz f=

Proof.  Let  be the solution of equation z Kz f= , that is 

                                     4 2 1 4 3 4, zz z fω ω ωω ω ω=+ 0= .                                       (1)  

( )2 ,z L ρ+∈First   prove  that  . Really,  from  the  second  equation  of  (1) it 

follows  that  ( )1
0

1
rg F zψγΛ −

−= ∈H . Consequently,  ( ) (0 2D gz FA Lγ = ∈ ) ,  
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that is (2z L ),ρ+∈ now that from (1) it also follows that 

1
0 0

1
1

. Note 

1
1F z Fψπ γΛ −

− = t equation of (1) it f

Let )

zψγΛ −
− . From the firs ollows that . 

2 ,z L

Kz f=

 and Kz f= . From  equality ( )1
0

1 1 1
0F z D F zAψγΛ γ−

− − −=  ( +∈ ρ

it  follows  that   
3 4 0zω ω = . 

Kz
N

Since , we have  
N N

A h A
m

hK K z K I zzϕ ψ ϕ ϕψ ψ ψΛ Λ Λ Λ Λ− − −

=

⎛ ⎞⎛ ⎞ ⎛ ⎞

f=

1 1 1
0 0 01 1 1

m m m m m m
m m= =

Λ= =⎜ ⎟⎜ ⎟ ⎜ ⎟= + −⎜ ⎟
⎝ ⎠

⎛ ⎞
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z

z

1 1
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1 1
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1
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1

1
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(

.

)
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m

N

m
m

N

m
m

K F

K F

z

FA D F

D

f

FA F

ϕψ ψ

ϕψ ψ

Λ γ γ γΛ

Λ γ γ π γΛ

ω ω ωω

− −

− −

− − −

=

− − −

=

+ −

+ −

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
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⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= + =

∑

∑  

Kz f=Thus, the equalities are correct, that is . The proof is completed. 
T h e o r e m  1 . To ensure that function 2 ( ),Lz ρ+∈  satisfies the equation  

N
g                                           2 ( )),

m m
zK g Lϕ ψ (

1m
Λ ρ+∈∑ ,                    

=

cessary and sufficient that function y = tisfy the equation  

=             (2)  

it is ne F ψγΛ −
−  sa

)x D y g F g LF γ γ− − ∈=

1
0

1 z

                                        )A .                               (3)  1 1
2( , ) ( (

Proof. Let the function ( )2 ,z L ρ+∈ ion of equation (2). A be a solut cting 

by operator 1F γ−  on both the parts of the equation (2) (it is feasible, since the 
functions mψ  ( ), ,1m N= … are  obtain 

1
0

1 1

1
m m

N

hAF z FK gϕ ψ

 bounded), we

m
γ Λ Λ γ−

− −=∑ . 

Taking to the equalities 
=

in  account 1 1( )
mA h mFA D Fγ γ− −=  and Λ

1 1
m m

F K Fϕ ϕγ γ Λ− − =  ( 1, , )Nm = … , we find   

m

1( )
m

N

m DA y g
1

FϕΛ γ−=∑
1 zγΛ−

=
. 

Earlier, it has been shown that ( )ry F ψ −= ∈H�  (see the proof of Lemma 1). 

Vice versa, now let the function 

1
0

( )ry∈H  be the solution of equation (3). Then it 
)is true that 

0

1
2 (z Fy Lψ ,Λ γ − ∈= ich is provided in Lemma 1. 

At the insertion of 1
0

1 zy F ψγΛ −
−= e have 

ρ+ , the proof of wh

 into (3), w

1
0

1 1

1
( )

m

N

m
m

A D F F gzϕ ψΛ γΛ −
− −

=
=∑ γ . 
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Taking into account the eq 1 1
m

uality
m

FF Kϕγ γ− −=  ( 1, ), Nm ϕΛ = … , we obtain  

                                   1 1( )mFA F 1
0

1 1

1
m

N

m
z FF K D gϕ ψγ γΛ− −γ γ−

− −

=
=∑ .                        (4)  

Acting by operator 1Fγ −  on both the parts of equality (4) e find  

m
m

FA D F z gψΛ −
− −

=

, w

( ) 1
0

1 1

1
m

N
Kϕ γ γ =∑ . 

− − =  )1 1( )
mm hAFA D Fγ γ Λ ( 1, , Nm = … , we find that By using equality 

1
m m

N

m
z gKϕ ψΛ =∑ , i.e  function z  is the solution of equation (2).  

=
. the

The Theorem is proved.  

, 40. In case of 2N = 1( ) 1xϕ =  and 
2

2 ( ) ch
2

x x i βϕ ξ− +
π α
α

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
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nd obtain I a
1

Kϕ =  
2

0
2

1 ln( )( ) ( ) ln xK dy x y ξ
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∞+

=
−

∫ . 
ξπ −

examples. Now, let us highlight two 

( )
2

2
1 2Example 1. Let A πξ ξ

α
= − , ( )

2

2 22πξ 2r = ,A−
α

=  and  then we ha

( )

ve  

) ( )( ( )
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2 2, '' ch
2

1x i yy x xA x x π π ξ
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−
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, D y αβ
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( )
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2 2 21 10
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x z
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x
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x
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−

+ −+
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Taking into account that functions  

−
=

−
+ . 

( ) ( )2

1 1
2 2

2
1 21 , 1

x i x ix x
y x e e y x e e

π αβ π αβπ πξ ξ
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⎛ ⎞ ⎛ ⎞− + − − +−⎜ ⎟ ⎜ ⎟
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⎤
⎥
⎥⎦

are solutions of equation ( ), 0A x D y =  from class ( )2H , we obtain according to 

( ) ( )1
4 2k k  ( )1,2k =the Assignment 1 that functions z x y xω ω−= −  are the basis of 

KerK . 
Example 2. Let ( )1 1 2aA a iξ ξ− += , ( )2 1A b iξ ξ 2b−=  and , where 

ind  
1r =

1 2 1 2, , ,a a b b ∈ , then we f

( ) ( ) ( ) ( ), ch ,A x D y x a b x i
2 2

1 1 2 2' ch
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Taking into account that the only solution of equation  does not 
belong to class 

( , ) ( ) 0A x D y x =

( )2L , we obtain that equation ( ) 0Kz x =  does not have any 

solutions from ( )2 ,L ρ+ . 
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