Physical and Mathematical Sciences 2011, № 1, p. 12–17

Mathematics

ON SOME SINGULAR INTEGRAL EQUATIONS ON THE SEMI-AXIS

V. V. SIMONYAN[∗](#page-0-0)

Chair of Differential Equations and Functional Analysis, YSU

In this paper the non-characteristic singular integral equations on the semiaxis are discussed. The solution of these equations is reduced to the solution of one-dimensional pseudo-differential equations. Some examples of singular equations for which explicit solutions exist are provided.

*Keywords***:** singular equation, pseudo-differential equation, matrix coupling.

1⁰. Let $\overline{\mathbb{R}}$ be a two-point compactification of $\mathbb{R} = (-\infty, +\infty)$ and $C(\overline{\mathbb{R}})$ – the Banach algebra of all complex valued continuous function on $\overline{\mathbb{R}}$. What follows, $\rho(z) = z^{\beta}$ (-1 < β < 1) is understood as the branch of this function that is analytical in $\mathbb{C} \setminus (-\infty, 0)$ and assumes positive values on the positive semi-axis $\mathbb{R}_{+} = (0, +\infty)$. Let Σ_{β} be a subalgebra of all linear bounded operators acting from and to the weighted space $L_2(\mathbb{R}_+, \rho)$, generated by operators I and $S_{\mathbb{R}_+}$, where $S_{\mathbb{R}_+}$ is a singular integral operator acting along \mathbb{R}_+ :

$$
(S_{\mathbb{R}_+}y)(x) = \frac{1}{\pi i} \int_0^{+\infty} \frac{y(\tau)}{\tau - x} d\tau.
$$

Here the integral is perceived in terms of the main value. The notation F means the following Fourier transform:

$$
(Fy)(\xi) = \hat{y}(\xi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ix\xi} y(x) dx \quad (y \in L_2(\mathbb{R}), \xi \in \mathbb{R}),
$$

and γ is the operator continuously reflecting $L_2(\mathbb{R}_+,\rho)$ in $L_2(\mathbb{R})$ according to formula $(\gamma y)(x) = e^{sx} y(e^{\alpha x})$, where $\alpha > 0$, $\sigma = \alpha(\beta + 1)/2$ and $s = \sigma + i\zeta$. It is not difficult to ascertain that the operator $\gamma^{-1} F$ is the Mellin transform.

Below the multiplicative operator by function u is denoted as Λ_u (i.e. $A_uy = uy$). For any function $a \in C(\overline{\mathbb{R}})$ the operator $K_a = \gamma^{-1} F A_a F^{-1} \gamma$ belongs to algebra Σ_{β} (see, e.g., [1, 2]).

 \overline{a}

^{*} E-mail: vahan@simonyans.com

As is well known, the characteristic equation $(A_a + S_{\mathbb{R}} A_b) y = f$ $(y, f \in L_2(\mathbb{R}_+, \rho))$ admits the explicit solution [3]. The present paper is devoted to the investigation of "difficult" singular integral operators of a type \widetilde{K} $\frac{1}{1}$ $\frac{\varphi_m}{\varphi_m}$ *N* $\widetilde{K} = \sum_{m=1}^{\mathstrut} K_{\varphi_m} A_{\!\scriptscriptstyle\psi}$

$$
\left(\varphi_m \in C\left(\overline{\mathbb{R}}\right), \psi_m \in L_\infty\left(\mathbb{R}_+\right)\right), \text{ acting from } L_2\left(\mathbb{R}_+, \rho\right) \text{ to itself.}
$$

Let $\mathbb{H}_r(\mathbb{R})$ $(r \ge 0)$ be Sobolev–Slobodetski spaces of the generalized functions u, the Fourier transform \hat{u} of which belongs to $L_2(\mathbb{R}, (1+|x|)^r)$ space. Following [4], the class of locally integrable functions A on \mathbb{R} , complying to condition $|A(\xi)| \le c(1+|\xi|)^r$, is denoted as \mathbb{S}_r^0 .

Let $\psi_0(x) = (1 + |\alpha^{-1} \ln x|)^r$ $(x \in \mathbb{R}_+)$ and functions $\psi_i \in L_\infty(\mathbb{R}_+)$ $(i = 1, ..., N)$. Now determine the functions $A_0 = \psi_0 \circ l$, $A_m = (\psi_m \circ l) A_0$ $(m = 1, ..., N)$ on \mathbb{R} , where $l(x) = e^{\alpha x}$ $(x \in \mathbb{R})$. It follows from here that $\psi_0 = A_0 \circ h$ and $W_m = (A_m \circ h) \psi_0^{-1}$ $(m=1,\ldots,N)$, where $h(x) = \alpha^{-1} \ln x$ when $x \in \mathbb{R}_+$. It is obvious that $A_m \in \mathbb{S}_r^0$ for all $m = 0, ..., N$.

Let us consider a operator $A(x,D)$ with a symbol $A(x,t) = \sum \varphi_m(x) A_m$ $(\mathbf{r},t)=\sum_{m=1}^{\infty}\varphi_m(x)A_m$ $A(x,t) = \sum_{m}^{N} \varphi_m(x) A_m(t)$ $=\sum_{m=1}^{\infty} \varphi_m(x) A_m(t)$: $A(x, D)u = \int e^{-ixt} A(x,t)\hat{u}(t)dt$ − ∞ $=\int\limits_{-\infty}e^{-ixt}A(x,t)\hat{u}(t)dt.$

Since $A(x,D)u = \sum A_{\varrho} A_m(D)$ $(L,D)u = \sum_{m=1}^{N} A_{\varphi_m}$ $A(x,D)u = \sum_{m=1}^{\infty} A_{\varphi_m} A_m(D)u$, then for $r \ge 0$ the reflection $A(x,D)$

may be prolonged till the continuous reflection from $\mathbb{H}_r(\mathbb{R})$ to $L_2(\mathbb{R})$ (see [4]).

Below the solution of "difficult" equation $Kz = g$ is reduced to a pseudodifferential equation $A(x, D)y = f$ for some f. The examples of "difficult" singular integral equations investigated based on this relationship are provided.

2⁰. Let X_i ($i = 1,...,4$) be linear spaces on the field of complex numbers, $\omega_1: X_1 \to X_2, \quad \omega_2: X_2 \to X_1, \quad \omega_3: X_1 \to X_3, \quad \omega_4: X_4 \to X_1$ are linear reflections and ω_4 is an invertible reflection. Let us consider the linear reflections

 $T: X_2 \to X_2 \oplus X_3,$ $K: X_4 \to X_1 \oplus X_3,$ $A_{12}: X_1 \oplus X_3 \to X_2 \oplus X_3, \quad A_{21}: X_2 \to X_4,$ $A_{22}: X_1 \oplus X_3 \to X_4, \qquad B_{11}: X_2 \oplus X_3 \to X_2,$ B_{21} : $X_2 \oplus X_3 \to X_1 \oplus X_3$,
 B_{21} : $X_2 \oplus X_3 \to X_1 \oplus X_3$, $B_{12}: X_4 \to X_2,$ *B* determined by equations 2 3 $1\omega_2$ $1\omega_1$ $\partial_3\omega_2$ $\left| \begin{array}{cc} 1 & 1 & -\end{array} \right|$ $-\omega_3$ $\left[\begin{matrix}X_2 + \omega_1 \omega_2\end{matrix}\right], \quad A_{12} = \begin{bmatrix} -\omega_1 & 0\end{bmatrix},$ *X A I* $T = \begin{bmatrix} \lambda_2 & 1 \\ 0 & \lambda_1 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 1 \\ -\omega_3 & 1 \end{bmatrix}$ ω_0 ω_2 ω_3 ω_4 $=\begin{bmatrix} I_{X_2} + \omega_1 \omega_2 \\ \omega_3 \omega_2 \end{bmatrix}, A_{12} = \begin{bmatrix} -\omega_1 & 0 \\ -\omega_3 & I_{X_3} \end{bmatrix}$

$$
A_{21} = \begin{bmatrix} -\omega_4^{-1} \omega_2 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} \omega_4^{-1} & 0 \end{bmatrix}, \quad B_{11} = \begin{bmatrix} I_{X_2} & 0 \end{bmatrix}, \quad B_{12} = \begin{bmatrix} \omega_1 \omega_4 \end{bmatrix},
$$

$$
B_{21} = \begin{bmatrix} \omega_2 & 0 \\ 0 & I_{X_3} \end{bmatrix}, \quad K = \begin{bmatrix} \omega_4 + \omega_2 \omega_1 \omega_4 \\ \omega_3 \omega_4 \end{bmatrix}.
$$

By means of direct calculations it is easy to make sure of the validity of equality

$$
\begin{bmatrix} T & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & K \end{bmatrix}.
$$

Based on this equality and results of [5] the following statement is derived.

Assignment 1. If $K^{(-1)}$ is pseudo-inverse of K , then the reflection

$$
T^{(-1)} = B_{11} - B_{12} K^{(-1)} B_{21}
$$

is pseudo-inverse of *T* . Similarly, if $T^{(-1)}$ is pseudo-inverse of *T*, then $K^{(-1)} = A_{22} - A_{21} T^{(-1)} A_{12}$

is pseudo-inverse of K . Spaces $KerT$ and $KerK$ are isomorphic. Besides, the following equalities are valid:

Ker
$$
T = B_{12}
$$
KerK, KerK $= A_{21}$ KerT,
Im $T = B_{21}^{-1}$ Im K, Im K $= A_{12}^{-1}$ Im T.

3⁰. Let $\mathbb{M}_r(\mathbb{R})$ be some direct addition to the linear space $\mathbb{H}_r(\mathbb{R})$ in $L_2(\mathbb{R})$ space, and

$$
\pi_1: L_2(\mathbb{R}) \to \mathbb{H}_r(\mathbb{R}), \ \pi_2: L_2(\mathbb{R}) \to \mathbb{M}_r(\mathbb{R})
$$

are projection operators that are related by the ratio

$$
\pi_1 y + \pi_2 y = y, \ \ y \in L_2(\mathbb{R}).
$$

Let us determine a space $W = \{ f : \psi_0^{-1} f \in L_2(\mathbb{R}_+, \rho) \}$. Then, apply the Assignment 1 for spaces

$$
X_1 = L_2(\mathbb{R}_+, \rho), \ \ X_2 = \mathbb{H}_r(\mathbb{R}), \ \ X_3 = \mathbb{M}_r(\mathbb{R}), \ \ X_4 = W
$$
 and operators

$$
\omega_1 = \pi_1 F^{-1} \gamma, \quad \omega_2 = \sum_{m=1}^N K_{\varphi_m} \gamma^{-1} F A_m(D) - \gamma^{-1} F, \quad \omega_3 = \pi_2 F^{-1} \gamma, \quad \omega_4 = A_{\varphi_0^{-1}}.
$$

By using the equality $F^{-1}\gamma K_{\varphi_m}\gamma^{-1}F = \Lambda_{\varphi_m} (m = 1, ..., N)$ it is easy to ascertain that the operator *T* acting from $\mathbb{H}_r(\mathbb{R})$ to $L_2(\mathbb{R})$ coincides with $A(x,D)$.

Lemma 1. Let

$$
f = (\tilde{f}, 0) \in L_2(\mathbb{R}_+, \rho) \oplus \mathbb{M}_r(\mathbb{R}).
$$

The function *z* is the solution of equation $Kz = f$, iff $z \in L_2(\mathbb{R}_+, \rho)$ and $\tilde{K}z = \tilde{f}$. *Proof.* Let *z* be the solution of equation $Kz = f$, that is

$$
\omega_4 z + \omega_2 \omega_1 \omega_4 z = \tilde{f}, \quad \omega_3 \omega_4 z = 0.
$$
 (1)

First prove that $z \in L_2(\mathbb{R}_+, \rho)$. Really, from the second equation of (1) it follows that $g = F^{-1} \gamma A_{\psi_0^{-1}} z \in \mathbb{H}_r(\mathbb{R})$. Consequently, $\gamma z = F A_0(D) g \in L_2(\mathbb{R})$, that is $z \in L_2(\mathbb{R}_+, \rho)$. Note now that from (1) it also follows that $\frac{1}{0}$ = 1 $\frac{1}{2}$ $\frac{1}{\psi_0}$ $\pi_1 F^{-1} \gamma A_{\psi_0^{-1}} z = F^{-1} \gamma A_{\psi_0^{-1}} z$. From the first equation of (1) it follows that $\tilde{K}z = \tilde{f}$.

Let $z \in L_2(\mathbb{R}_+, \rho)$ and $\tilde{K}z = \tilde{f}$. From equality $F^{-1}\gamma A_{\psi_0^{-1}} z = A_0^{-1}(D)F^{-1}\gamma z$ it follows that

$$
\omega_3\omega_4z=0.
$$

Since $\tilde{K}z = \tilde{f}$, we have

$$
\left(\sum_{m=1}^{N} K_{\varphi_m} A_{\psi_m}\right) z = \left(\sum_{m=1}^{N} K_{\varphi_m} A_{A_m \circ h} A_{\psi_0^{-1}}\right) z = \left(A_{\psi_0^{-1}} + \left(\sum_{m=1}^{N} K_{\varphi_m} A_{A_m \circ h} - I\right) A_{\psi_0^{-1}}\right) z =
$$
\n
$$
= \left(A_{\psi_0^{-1}} + \left(\sum_{m=1}^{N} K_{\varphi_m} \gamma^{-1} F A_m(D) - \gamma^{-1} F\right) F^{-1} \gamma A_{\psi_0^{-1}}\right) z =
$$
\n
$$
= \left(A_{\psi_0^{-1}} + \left(\sum_{m=1}^{N} K_{\varphi_m} \gamma^{-1} F A_m(D) - \gamma^{-1} F\right) \pi_1 F^{-1} \gamma A_{\psi_0^{-1}}\right) z =
$$
\n
$$
= (\omega_4 + \omega_2 \omega_1 \omega_4) z = \tilde{f}.
$$

Thus, the equalities are correct, that is $Kz = f$. The proof is completed.

Theorem 1. To ensure that function $z \in L_2(\mathbb{R}_+, \rho)$ satisfies the equation

$$
\sum_{m=1}^{N} K_{\varphi_m} A_{\psi_m} z = g (g \in L_2(\mathbb{R}_+, \rho)), \qquad (2)
$$

it is necessary and sufficient that function $y = F^{-1} \gamma A_{\psi_0^{-1}} z$ satisfy the equation \int^1 *y* Λ _{we} z

$$
A(x,D)y = F^{-1}\gamma g(F^{-1}\gamma g \in L_2(\mathbb{R})).
$$
\n(3)

Proof. Let the function $z \in L_2(\mathbb{R}_+, \rho)$ be a solution of equation (2). Acting by operator $F^{-1}\gamma$ on both the parts of the equation (2) (it is feasible, since the functions ψ_m $(m=1,...,N)$ are bounded), we obtain

$$
\sum_{m=1}^N F^{-1} \gamma K_{\varphi_m} \Lambda_{A_m \circ h} \Lambda_{\psi_0^{-1}} z = F^{-1} \gamma g.
$$

Taking into account the equalities $A_{A_m \circ h} = \gamma^{-1} F A_m(D) F^{-1} \gamma$ and $F^{-1} \gamma K_{\varphi_m} \gamma^{-1} F = A_{\varphi_m} \quad (m = 1, ..., N)$, we find

$$
\sum_{m=1}^N A_{\varphi_m} A_m(D) y = F^{-1} \gamma g \; .
$$

Earlier, it has been shown that $y = F^{-1} \gamma A_{\psi_0^{-1}} z \in \mathbb{H}_r(\mathbb{R})$ (see the proof of Lemma 1). Vice versa, now let the function $y \in \mathbb{H}_r(\mathbb{R})$ be the solution of equation (3). Then it is true that $z = A_{\psi_0} \gamma^{-1} F y \in L_2(\mathbb{R}_+, \rho)$, the proof of which is provided in Lemma 1. At the insertion of $y = F^{-1} \gamma A_{\psi_0^{-1}} z$ into (3), we have

$$
\sum_{m=1}^N A_{\varphi_m} A_m(D) F^{-1} \gamma A_{\psi_0^{-1}} z = F^{-1} \gamma g.
$$

Taking into account the equality $A_{\varphi_m} = F^{-1} \gamma K_{\varphi_m} \gamma^{-1} F$ $(m = 1, ..., N)$, we obtain

$$
\sum_{m=1}^{N} F^{-1} \gamma K_{\varphi_m} \gamma^{-1} F A_m(D) F^{-1} \gamma A_{\psi_0^{-1}} z = F^{-1} \gamma g \ . \tag{4}
$$

Acting by operator $\gamma^{-1}F$ on both the parts of equality (4), we find

$$
\sum_{m=1}^N K_{\varphi_m} \gamma^{-1} F A_m (D) F^{-1} \gamma A_{\psi_0^{-1}} z = g.
$$

By using equality $\gamma^{-1}FA_m(D)F^{-1}\gamma = A_{A_m \circ h}$ $(m=1,...,N)$, we find that $\frac{1}{1}$ $\frac{\varphi_m}{\varphi_m}$ *N* $\sum_{m=1} K_{\varphi_m} \Lambda_{\psi_m} z = g$, i.e. the function *z* is the solution of equation (2).

The Theorem is proved.

4⁰. In case of
$$
N = 2
$$
, $\varphi_1(x) = 1$ and $\varphi_2(x) = \left[\text{ch} \frac{\pi}{\alpha} \left(x - \xi + i \frac{\alpha \beta}{2} \right) \right]^{-2}$ we obtain $K_{\varphi_1} = I$ and $(K_{\varphi_2} y)(x) = \frac{1}{\pi^2} \int_0^{+\infty} y(\xi) \frac{\ln \xi - \ln x}{\xi - x} d\xi$.

Now, let us highlight two examples.

Example 1. Let
$$
A_1(\xi) = -\xi^2 - \frac{\pi^2}{\alpha^2}
$$
, $A_2(\xi) = 2\frac{\pi^2}{\alpha^2}$ and $r = 2$, then we have
\n
$$
A(x, D)y(x) = y''(x) + \frac{\pi^2}{\alpha^2} \left[2 \left[\text{ch} \frac{\pi}{\alpha} \left(x - \xi + i \frac{\alpha \beta}{2} \right) \right]^{-2} - 1 \right] y(x),
$$
\n
$$
\widetilde{K}z(x) = \frac{-\left(\alpha^{-1} \ln x \right)^2 - \pi^2/\alpha^2}{\left(1 + \left| \alpha^{-1} \ln x \right| \right)^2} z(x) + \frac{2}{\alpha^2} \int_0^{+\infty} \frac{z(\xi)}{\left(1 + \left| \alpha^{-1} \ln \xi \right| \right)^2} \cdot \frac{\ln \xi - \ln x}{\xi - x} d\xi.
$$

Taking into account that functions

$$
y_1(x) = e^{\frac{\pi}{\alpha}x} \left[1 + e^{\frac{2\pi}{\alpha} \left(x - \xi + i\frac{\alpha\beta}{2}\right)} \right]^{-1}, \quad y_2(x) = e^{\frac{\pi}{\alpha}x} \left[1 + e^{\frac{-2\pi}{\alpha} \left(x - \xi + i\frac{\alpha\beta}{2}\right)} \right]^{-1}
$$

are solutions of equation $A(x,D)y = 0$ from class $\mathbb{H}_2(\mathbb{R})$, we obtain according to the Assignment 1 that functions $z_k(x) = -\omega_4^{-1} \omega_2 y_k(x)$ $(k = 1, 2)$ are the basis of $Ker\widetilde{K}$.

Example 2. Let $A_1(\xi) = -a_1 i \xi + a_2$, $A_2(\xi) = b_1 i \xi - b_2$ and $r = 1$, where $a_1, a_2, b_1, b_2 \in \mathbb{C}$, then we find

$$
A(x,D)y(x) = \left(a_1 - b_1 \left[\text{ch}\frac{\pi}{\alpha}\left(x - \xi + i\frac{\alpha\beta}{2}\right)\right]^{-2}\right)y'(x) + \left(a_2 - b_2 \left[\text{ch}\frac{\pi}{\alpha}\left(x - \xi + i\frac{\alpha\beta}{2}\right)\right]^{-2}\right)y(x),
$$

$$
\widetilde{K}z(x) = \frac{-a_1i\alpha^{-1}\ln x + a_2}{1 + |\alpha^{-1}\ln x|}z(x) - \frac{1}{\pi^2}\int_0^{+\infty} \frac{-b_1i\alpha^{-1}\ln \xi + b_2}{1 + |\alpha^{-1}\ln \xi|} \cdot \frac{\ln \xi - \ln x}{\xi - x}z(\xi) d\xi.
$$

Taking into account that the only solution of equation $A(x, D)y(x) = 0$ does not belong to class $L_2(\mathbb{R})$, we obtain that equation $\widetilde{K}z(x) = 0$ does not have any solutions from $L_2(\mathbb{R}_+,\rho)$.

Received 14.09.2010

REFERENCES

- **.H., Nersesyan A.B.** AN SSSR, Funk. Analiz i Ego Prilozh., 1989, v. 23, № 2, 1. **Kamalyan A** p. 32–39 (in Russian).
- 2. **Roch S., Silbermann B.** Algebras of Convolution Operators and their Image in the Calkin Algebra. Berlin, 1990.
- 3. Gohberg I., Krupnik N. One-Dimensional Linear Singular Integral Equations. V. I, II. Basel-Boston–Berlin, 1992.
- 4. Eskin G.I. Boundary Problems for Elliptic Pseudo-Differential Equations. M.: Nauka, 1973 (in Russian).
- Advances and Applications. Basel: Birkhauser, Verlag, 1984, v. 12, p. 39–73. 5. **Bart H., Gohberg I., Kaashoek M.A.** The Coupling Method for Solving Integral Equations.