
PROCEEDINGS  OF  THE  YEREVAN  STATE  UNIVERSITY         
  

 

Physical  and  Mathematical  Sciences                                                   2011,  № 1,  p. 18–22    
 
 
 

 
 

M a t h e m a t i c s  
 

STABILITY  OF  FREQUENCY  DISTRIBUTION  IN  FRAME  OF  
NATURAL  PARAMETRIZATION. I 

 
 

E. A. DANIELIAN,  S. K. ARZUMANYAN∗  
 

Chair of Probability Theory and Mathematical Statistics, YSU 
 

In this paper the stability problem for frequency distribution in frame of 
natural parameterization is formulated and discussed. The case of finite number of 
independent parameters is characterized. A corresponding stability problem is 
investigated in terms of  lp-metric. 
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Introduction. The sequence  { }0np ∞  forms a frequency distribution (FD) if 

 and . In the bioinformatics (see [1]): 0, 0np n> ≥ 1np =∑
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 Assume that in (1) (2, )ρ ∈ +∞  and in (2)  0 0n = . 
 The unknown FDs are approximated by various parametric distributions 

{ }0( )np c ∞G  with the vector  of parameters, that are referred to also as FDs. cG

 Let 1( ,..., ) , ,m mc c c c mΩ= = ∈ < +∞
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Similarly,{ }  is 0( )n mp c ∞G μ -stable, if  (3) holds for any K . 
Stability Problem. Introduce the metric μ  and find conditions for                      

μ -stability of  FD { } . 0( )n mp c ∞G

In this paper the stability problem for FD { }0np ∞  in bioinformatics is 
formulated in frame of natural parameterization (NP) in case of finite number of 
independent parameters and is solved in terms of -metric, . pl 0p >

Natural Parameterization (NP). Due to [2], { }0np ∞  is a FD, iff  
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Then 1( / ), 1.n n np p nε −= ≥ The coefficients 1 2, ,...ε ε are treated as parameters of  

 in its NP (4)–(5). Let { }0np ∞ { } { }1
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1, ,j m=  where  and any parameter in the set 1 2 11 ... (mk k k k += < < < < +∞ = ),m

{ }:j kG kε= ∈ jT  is uniquely determined by the vector 1( ,..., )jc c . Here ,
ii kc ε=  

1,i = j . The parameters   are independent. This is a characterization of   

-parametric FD {  in its NP (4)–(5). 
1,..., mc c
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So,  and { } { }0 0( )n n mp p c∞ ∞=
G

1( ,..., )k k jh c cε =  for given , 1,j j m= , and 

k Gjε ∈ .  It is clear that  1( ,..., )
jk j jh c c c=  for 1,j m= . Assume that: 

a) kh  for , 1,jk k j m≠ = ,  is increased by each parameter separately;   

b) partial derivatives ( / )k ih c∂ ∂  for 1,i j=  exist and are uniformly bounded 
with respect to 1k ≥ . 

Now recall the form of  -metric: pl { } { }( )0 0, | |p
p n n n n
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′ ′= −∑ , and 

formulate in this case the Stability Problem: for admissible  prove  the        

-stability of  FD { . 

0p >

pl }0np ∞

T h e o r e m  1 .  In our case the FD { }0np ∞  is -stable. 1/ 2l
For given  and K Ω⊆ 1,j m=  denote 

                                 { } { }inf : , sup :j m j j mjc c c K c c c K= ∈ = ∈
G G .                       (6) 

It is easy to see that for given , 1,j j m= , there is  mc K∈
G   with j jc c= . Indeed, if 

for all  the components  are identical, then the statement is obvious. 

Assume that there are 
mc K∈
G

jc

,m mc c K′ ∈
G G  with  jc c j′<  for given , 1,j j m= . Due to the 
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convexity of K , for any [ , ]j jc c c′∈  there is mc K′′ ∈
G  such that jc c′′ = . In this case, 

as it follows from the definition of  jc  for given , 1,j j m= , there is a sequence 

{ }( )
1

k
mc

∞
∈

G K  such that ( )lim k
j jk

c
→+∞

c= . Extracting the convergent subsequence 

{ }( )

1
sk

mc
∞
∈

G K   from  { }( )
1

k
mc

∞G , the statement is proved due to the closeness of K . 
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The first chain of inequalities (7) is proved similarly.  
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L e m m a 1 .  The function ( )mg cG us on *K .  is continuo

A∈
Proof.  The conditions (a) and (b) on *K  imply the existence of constant 

[1, )+ ∞  (depending only on K ) such that for any * 1,j m= , jk T∈  and 
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1. There is mc K+ ∈
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