PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2011, Ne 1, p.28-35

Informatics

UNSOLVABILITY OF TYPE CORRECTNESS PROBLEM FOR
FUNCTIONAL PROGRAMS

A.H. ARAKELYAN"

Chair of Programming and Information Technologies, YSU

In the present paper the type correctness problem is considered for functional
programs without the type information. The aim of this research is to prove that
there is no algorithm to reject all programs, during execution of which the type
error would occur and accept all programs, during execution of which the type
error would not occur.

Keywords: term, redex, reduction strategy, type error.

1. Introduction. The compile time type checking is important in any
programming language for purposes such as the early detection of programming
errors, for doing optimizations etc. In the present paper we consider the compile
time type checking problem for functional programs, where no explicit type
information is provided by the programmer. Ideally, it would be excellent to have
such a type checking algorithm to determine whether during the execution of any
given arbitrary program by the interpreter the type error occurs or not. It will be
shown that no such an algorithm exist even for the terms that can be also treated as
functional programs with one non-recursive equation. For proving the main
theorems of this paper, we shall widely use important properties of A/ system
introduced in [1].

2. Definitions Used and Preliminary Results. Let the TermVariable be a
countable set of term variables and the Constant be a countable set of term
constants.

Definition 2.1. The set of terms Term is defined as follows:

1) LeTerm and is for representing type errors;

2) if x e TermVariable, then x € Term;

3) if c € Constant,then c € Term,

4) if xeTermVariable and M € Term, then (AxM)e Term, and we say
that the term (AxM) is obtained from term variable x and term M by means of

abstraction operation;
5) if M,M, eTerm, then (M M,)eTerm, and we say that the term

(M,M,) is obtained from terms M, and M, by means of application operation.

* E-mail: ara_arakelyan@yahoo.com

mailto:ara_arakelyan@yahoo.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35. 29

The notions of a free and bound occurrence of a variable in a term and the
notion of a free variable of a term are introduced in a conventional way. The set of
all free variables of a term M is denoted by FV(M). The notion of congruency

(=) of two terms is also introduced in a conventional way. We will use the

following abridged notations:
1. The term (...(M,M,)...M,) 1is denoted by M M,...M,, where

M, eTerm, i=1,....k and k>2;

2. The term (Ax;(Ax,(...(Ax,M)...))) is denoted by Axx,...x,.M, where
x; € TermVariable, i=1,... .k, k>1, M € Term;

3. By M][x,,....x,] we denote the term M mentioning also mutually
different term variables x,,...,x, that interest us, where k >1;

4. By M[x,=M,,...,x, =M,] we denote the term obtained by the
simultaneous substitution of the terms M,,...,M, for all free occurrences of the
variables x,,...,x, respectively into the term M, wherek >1.

The notion of / -reduction, one-step f -reduction (—,), f -reduction

(—5), pP-equality (=4), B -redex, p-reduct, S -normal form and strongly

f -normalizable terms are defined in a standard way. The set of all £ -normal
forms is denoted as S - NF.

Definition 2.2. Any relation & c Term® is called a notion of & -eduction, if
the following conditions are satisified:

1) if (M,M")ed, then M =cM,...M,, where c e Constant, M, € Term,
i=1...k, k=1

2) if (M,M")Yeo and (M,M")e &, then M'=M",

3) there exists an algorithm such that for any input term cM,...M, where
ceConstant, M,eTerm, i=1,...,k, k=1, it returns term M’ such that
(eM,...M,,M") e or returns no, if there does not exist any term M' such that
(eM,.. M, ,M")eo.

Here we mention only those properties of notion of ¢ -reduction that we
need in this paper. The real notion of ¢ -reduction must also have other properties
that are necessary, when proving some important propositions, e.g. uniqueness of
S06 -normal form etc. One-step & -reduction (—4), o -reduction (—4), o -equali-
ty (=5), o -redex, J -reduct and ¢ -normal form are defined in a standard way.

Definition 2.3. Let 6 be some notion of ¢ -reduction. The relation fUJ is
called a notion of S6 -reduction. One-step B¢ -reduction (—45), B6 -reduction

(—ps), B0 -equality (=g45), PO -edex, B6 -reduct and 6 -normal form are

defined in a standard way.
Now let us define the notion of £ -reduction strategy.
Defition 2.4. The map R:Term — Termis called a £ -reduction strategy, if

M —45 R(M) for any term M and if M is not S6 -normal form, then there

30 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35.

exists M, € Term such that M — 5, M| —4; R(M). The strategy R is called one-
step strategy, if for any term M, which is not S5 -normal form, M — ;5 R(M).
The strategy R is called an effective strategy, if there exists an algorithm such that
for any input term M it returns R(M).

Let us define the subset of terms Terml, which plays an important role in
this paper.

Definition 2.5. The subset of terms Terml < Term is defined as follows:

1) if x e TermVariable, then x € Term;

2) if x e TermVariable, M € Terml and x € FV (M), then (AxM) e Terml;

3) if M,,M, eTerml, then (M,M,) € Terml.

Now we will present Church—Rosser Theorem [1] about the terms of Terml.

Theorem 2.1. Let M e Terml. If M has a f -normal form, then M is a

strongly f -normalizable term, i.e. any sequence of f -reductions in term M
reduces it to its £ -normal form.

Let us present some abridged notations and coding of natural numbers using

terms of Terml.
1. I=Axx, T=Axyyllx, F=Axxlll, Zero= Axx(TF)TTF,;

2. M°M'=M', M"'M'=MM"M', where M,M' e Term and n>0;
3. Cy=Axyxlly, C,=Afx.f"x, where n>1.
Next two lemmas from [1] present some simple f -equalities, which are

used later in this paper.
Lemma 2.1. The following S -equalities hold:

1. ZeroC, =5 T and ZeroC, =5 F, where n>1;

2. Ml=41, Tll=41, Fll =41, C, Il =4 I, where n>0.

Lemma 2.2. Let P,QeTerml, PIl =51 and QII =4 I. Then the following
B -equalities hold: TPQ =; P and FPQ =, Q.

It is obvious, that the set of terms Terml is a countable set. Hence we can
enumerate terms of Terml using natural numbers. Let us fix one such effective
enumeration and denote number of term M € Terml/ in this enumeration by M.

Definition 2.6. Let ¢: A—> N be an arithmetic function, where 4 < N* and
k>1. Then ¢ is said to be defined by the term M € Terml , if the following
conditions are satisfied:

1) if (n,...,n;) € 4 and @(ny,...,n;)=m, then MC, ...C, =, C,;

2) if (m,...,n;) € 4, then MC, ...C, hasno f -normal form.

Theorem 2.2 (Kleene [1]). The arithmetic function ¢:A4—> N, where

Ac N* and k>1, can be defined by the term of Terml, iff ¢ is a partial
recursive function.

3. Main Results. Before presenting main theorems of this paper, let us
introduce several definitions and see what does the phrase “term contains type

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35. 31

error” mean. We will use the following abridged notation: R’(M)=M and
R"™'(M)=R(R"(M)), where M € Term, R is a 35 -reduction strategy and n > 0.

Definition 3.1. Let M e Term and R is a fJ -reduction strategy. We say
that M contains a type error in R, if there exists n>0 such that L is a subterm
ofterm R"(M).

Definition 3.2. Let M e Term and R is a f6 -reduction strategy. We say
that R terminates on M, if there exists n>0 such that R""'(M)=R"(M).
Otherwise, we say that R does not terminate on M.

Definition 3.3. The set A Term is called recursive, if the set {1\7 |M e A}

of natural numbers is recursive.
Definition 3.4. Let 6 be some notion of o -reduction. We say that
c € Constant is a constant of O-order for ¢, if for any M,,...,M, € Term,

(cM,..M,,1)ed, where n>1.

For the reminder of this paper assume that there exists at least one common
constant of 0-order for all notions of & -reduction to be considered by us. The
following lemmas are needed for proving the main theorems of this paper.

Lemma 3.1. Let M eTerml, xM,...M, is a subterm of term M, where

x € TermVariable, M, € Terml, i=1,...,n, n>0, and for at least one occurrence
of xM,...M, in M, occurrence of variable x at the beginning of that subterm is
free in M. If M —, M’, then there exists xM/...M, subterm of term M’ such

that M eTerml, i=1,...,n, and for at least one occurrence of xM/...M| in M,

the occurrence of variable x at the beginning of that subterm is free in M.
Proof. To avoid mentioning the occurrence of subterm xM,...M, every

time during the proof, assume that we deal only with such an occurrence of
subterm xM,...M, , for which the occurrence of variable x at the beginning of

that subterm is free in M. Assume that (1y.M,[y])M; is a f -redex correspon-
ding to the one step /3 -reduction M — ; M". Let us consider 4 possible cases:

1. The occurences of xM,...M, and (Ay.M,[y])M, in M have no
common parts. It is evident, that in this case the same occurrence of xM,...M,

also exists in M.

2. The occurrence of xM,...M, is in M. Since M €Terml, then
yeFV(M,[y]). Therefore, there exists at least one occurrence of xM,...M, in
M,[y=M;] and hence in M', for which occurrence of variable x at the
beginning of it is free in M.

3. The occurrence of xM,...M, is in M [y]. Because of our agreement
x#y. Therefore, it is evident that there exists an occurrence of
xM\[y=M{]..M [y=M'] in Mj[y=M;] and hence in M’, for which the
occurrence of variable x at the beginning of it is free in M.

32 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35.

4. There exists k €{l,...,n} such that the occurrence of (1y.M [y])M, is in
M,. It is evident, that in this case there exists an occurrence of xM,...M,...M, in
term M', for which the occurrence of variable x at the beginning of it is free in M,
where M, is obtained from M, by replacing (1y.M [y])M, withits S -reduct.

Lemma 3.1 is proved.
Corollary 3.1. Let M eTerml, xM,...M, is a subterm of term M, where

x € TermVariable, M, € Terml, i=1,...,n, n=0, and for at least one occurrence
of xM,...M, in M, the occurrence of variable x at the beginning of that subterm
is free in M. If M —,; M, then there exists xM/...M subterm of term M' such

that M eTerml, i=1,...,n, and for at least one occurrence of xM/...M| in M',

the occurrence of variable x at the beginning of that subterm is free in M.
Proof. The proof follows directly from Lemma 3.1.
Corollary 3.1 is proved.
Lemma 3.2. Let M € Terml has a f -normal form, R is a f¢ -reduction

strategy and ¢ is a constant of 0-order for ¢. If Mc contains type error in R, then
M also will contain type error in R, where M’ isa f -normal form of M.
Proof. First of all let us note, that during S¢ -reductions in term Mc
P -redexes can be in the form cM,...M, only, where M, e Terml, i=1,...,n and
n>1. Hence, the type error will occur, when replacing an arbitrary ¢ -redex with
its O -reduct, because c¢ is a constant of 0-order. We will prove Lemma 3.2 by
contradiction. Let us suppose that Mc contains a type error in R, but Mc does
not contain any type error in R. Then it is evident that Mc does not contain any
0 -redex. Since M' is a f -normal form, Mc can contain f -redex only when
M'=2y.My[y]. In that case at follows that Mc—, My[y:=c] and M[y:=c]
does not f -redex anymore. The term M [y:=c] also does not contain ¢ -redex,
otherwise, M'c would have contained a type error in an arbitrary A5 -reduction
strategy and hence in R too. Here we can conclude, that if M ¢ is not 6 -normal
form, then it reduces to fo -normal form after one f -reduction. Let us denote
So6 -normal form of term Mc by M". Since Mc contains a type error in R, after
doing finite f -reductions in Mc, the strategy R finally does one & -reduction,

which brings to type error. Let us denote the term directly prior to that first
o -reduction mentioned above by M,. So M, has a subterm of the form

cM,...M,. Let us forget that ¢ is a constant and assume just for a moment that ¢
is a variable. In that case it is evident that Mc,M ,M" € Terml, Mc g M, and

M" isa f -normal form of Mc. Hence M, —, M". Bassed on Corollary 3.1, we

can conclude, that M" has a subterm of the form cM,...M,, which contradicts
the fact that M" is a 6 -normal form.

Lemma 3.2 is proved.
Lemma 3.3. Let M €Terml has a £ -normal form, R is a f¢ -reduction

strategy and ¢ is a constant of 0-order for ¢. If Mc does not contain a type error in

n?’

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35. 33

R, then M also will not contain any type error in R, where M’ is a S -normal
form of M.

Proof. First of all let us note, that during f¢ -reductions in term Mc
o -redexes can be in the form ¢M,...M, only, where M, e Terml, i=1,...,n and

n>1. Hence, the type error will occur, when replacing arbitrary & -redex with its
J -reduct, because c is a constant of 0-order. Since Mc does not contain the type
error in R, the strategy R does only f -reductions in term Mc. We will prove

Lemma 3.3 by contradiction. Let us suppose that Mc does not contain a type error
in R, but Mc contains a type error in R. It is evident that M ¢ does not contain
0 -redex. Since M'c must contain a type error in R, the term M’', which is a
p -normal form, must have the following form: M'=Ay.M[y]. Hence
Me=(AyMlyDe— 5 Mily=cl. (D
It is obvious that M [y :=c] does not contain f -redex anymore, but it must
have a subterm of the form cM,...M,, otherwise, Mc will not contain a type
error in R. Let us forget that ¢ is a constant and think that ¢ is a term variable just
for a moment. In that case it is evident that Mc,Mc,M[y:=c]eTerml and
Mc —; Mec. Hence, according to (1), Mc—»; My[y:=c]e f-NF. Since the
strategy R does only £ -reductions in term Mc, by Theorem 2.1 the strategy R
will reduce Mc to the M([y:=c] after finite [-reductions. On the other hand,
M{[y:=c] must have a subterm of the form cM,...M, as is seen above. Thus,

Mc contains a type error in R in contravention of the Lemma’s condition.

Lemma 3.3 is proved.

Corollary 3.2. Let M € Terml have a £ -normal form, R be a £6 -reduction
strategy and ¢ be a constant of 0-order for 6. Then Mc contains a type error in R,
iff Mc contains a type error in R, where M’ isa f -normal form of M.

Proof. The proof follows directly from Lemma 3.2 and Lemma 3.3.

Corollary 3.2 is proved.

Now it is the time to present the main theorems of this paper.

Theorem 3.1. Let R be some p& -reduction strategy. There is no
algorithm that for input term M € Term returns yes, if M does not contain a type
error in R and returns no, if M contains a type error in R.

Proof. We will prove the Theorem by contradiction. Let us suppose that such
an algorithm does exist. Assume that ¢ is a constant of 0-order for J. It is evident
that the set 4 ={M < Terml | Mc does not contain a type error in R} is recursive,

because for determining whether the term M eTerml belongs to A or not, it is
sufficient to run the above existing algorithm for the input term Mc. From
recursiveness of A follows recursiveness of the set A'={M e Terml | MC € 4}.

Hence there exists a total recursive function ¢: N — N such that @(M) =1, when

MeA and (p(ﬂ)=0, when M ¢ A'. According to Theorem 2.2, there exists
M, € Terml such that ¢ is defined by term M, i.e.

34 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35.

Med=MC.=,C, (2)
MegAd =M,Co=4C,. (3)
Now we will construct a new term wusing the term M:

P=AxZero(Mx)M'M" € TermI, where M'=Axxe A and M"=Axxx¢ A. Let

us show the following:
Med = PC_ ¢4, “

MgAd = PCs e A)

1. First let us prove (4). We have that M € A". Hence by (2), Lemma 2.1
and Lemma 22, PC = (Ax.Zero(M,x)M M ”)C]\7 — 3 Zero(MC.)M M'" —
—y ZeroCMM" — 5 FM'M" —, M" € f-NF. So M" is a f -normal form of
PCA?. Since M'c=(Ax.xx)c contains a type error in an arbitrary S0 -reduction
strategy and hence in R too, by Corollary 3.2, PC.c will also contain a type error
in R, which means that PCM ¢ A.

2. Now let us prove (5). We have that M ¢ A". Hence by (3), Lemma 2.1
and Lemma 22, PC = (Ax.Zero(M,x)M M ”)CA7 — 3 Zero(M,C.)M M'" —
—5 ZeroCGM'M" — 5 TM'M" —, M"e f-NF. So M' is a f -normal form of
PCA?. Since M'c=(Ax.x)c does not contain a type error in every S0 -reduction
strategy and hence in R too, according to Corollary 3.2, PCc also will not
contain any type error in R, which means that PC € 4.

The term P e Terml constructed by us either belongs to or does not belong
to A" If Pe A, then, by (4), PC;) ¢ A, i.e. Pg A, which is not possible. If

Pg A, then, by (5), PC; € 4, i.e. Pe A', which is not possible either. We came

to contradiction. Hence, such an algorithm does not exist.

Theorem 3.1 is proved.

Theorem 3.2. There is no algorithm that for input term M € Term returns
yes, if M does not contain type error in certain S35 -reduction strategy and returns

no, otherwise, i.e. when M contains a type error in arbitrary f¢ -reduction strategy.

Proof. The proof differs from that of previous theorem in choice of set 4
and in the proof of propositions (4) and (5). In this case 4={M € Terml | Mc does

not contain a type error in certain 6 -reduction strategy}. Now let us prove
propositions (4) and (5).

1. First let us prove (4). In the same way we can conclude, that M" is a
f -normal form of PC,. Since M'c=(Ax.xx)c contains a type error in every
S0 -reduction strategy, by Corollary 3.2, PCﬁc will also contain the type error in
every S0 -reduction strategy, which means that PCﬁ z A

2. Now let us prove (5). In the same way we can conclude that M’ is a
B -normal form of PC.. Since M ¢ =(Ax.x)c does not contain a type error in

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 1, p. 28-35. 35

every fo -reduction strategy, by Corollary 3.2, PC..c also will not contain the
type error in every S5 -reduction strategy, which means that PC € 4.

Theorem 3.2 is proved.
Theorem 3.3. There is no algorithm that for input term M € Term
returns yes, if M does not contain a type error in arbitrary ¢ -reduction strategy

and returns no, otherwise, i.e. when M contains the type error in certain
S0 -reduction strategy.

Proof. The proof differs from that of previous theorem only in the choice of
set A. In this case 4={M e Terml | Mc does not contain a type error in arbitrary

0o -reduction strategy }.

Theorem 3.3 is proved.
Theorem 3.4. Let R be some pO -reduction strategy. There is no

algorithm that for input term M € Term returns yes, if M does not contain type
error in R and R terminates on M, and returns no, otherwise, i.e. when M
contains the type error in R or R does not terminate on M.

Proof. The proof differs from that of Theorem 3.1 in choice of set 4 and in
proof of propositions (4) and (5). In this case 4={M €Terml|Mc does not
contain type error in R and R terminates on M}. Now let us prove propositions
(4) and (5).

1. First let us prove (4). In the same way we can conclude that M" is a
f -normal form of PCA?. Since M'c=(Ax.xx)c contains a type error in every

B¢ -reduction strategy, by Corollary 3.2, PCc will also contain the type error in
every 6 -reduction strategy and hence in R too, which means that PC- ¢ A

2. Now let us prove (5). In the same way we can conclude that M’ is a
f -normal form of PCA?. Since M'c=(Ax.x)c does not contain type error in every

B¢ -reduction strategy, by Corollary 3.2, PC-c also will not contain type error in
every [0 -reduction strategy and hence in R too. Thus, after showing that R
terminates on PCA?c, we can conclude that PCﬁ € A. Since PCﬁc does not
contain type error in every f¢ -reduction strategy, only S -reductions will be done
during work of arbitrary A6 -reduction strategy on term PCc. Let us forget that

c is a constant and think that ¢ is a variable of term just for a moment. In that case
it is evident that PCe-c e Terml and ¢ is a S -normal form of PCec, because

Mc= (Axx)c —>4 ¢. By Theorem 2.1, PCMC is a strongly f -normalizable.
Hence, any f6 -reduction strategy terminates on PC-c.

Theorem 3.4 is proved.
Received 14.10.2010
REFERENCES

1. Barendregt H.P. The Lambda Calculus: Its Syntax and Semantics. Amsterdam, New York,
Oxford: North-Holland Pub. Comp., 1981.

