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In this paper a three-layer plate with symmetrical structure to solve the prob-
lem of determining the properties of the middle layer, which can propagate the 
harmonic wave in three-layer plate with phase speed equal to the phase speed of a 
single-layer plate. 
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The research of problems about propagation of waves in plates takes the 
beginning from works Rayleigh [1] and Lemb [2]. The similar problems are 
investigated in works [3–5]. In work [6] the problem of propagation of a plane 
harmonic wave in the reinforced layer is considered. 

1. Consider the three-dimensional problem of propagation of harmonic 
waves in elastic sandwich plate with symmetrical structure thickness 2 . On the  
lanes, limiting plate, given the condition of vanishing normal stress, a shear stress 
and a tangential displacement. The middle layer of plate concluded between the 
planes . 

H

z h= ±
For the equation of elastic wave propagation in a plate (the Lame equation) 

                                         2 2 2
2 1 2( )graddivc u c c u uα α α α αΔ + − = α                         (1.1) 

the Lame transformation is introduced 
                              grad rot (div 0)uα α α αϕ ψ ψ= + = .                        (1.2) 
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 are respectively the propagation velocities of longitudinal and 

transverse waves in the material of the layer with number α  11 13 12 32( ,c c c c )= = , 
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, ( , , , )x y z tαϕ , 

( , , , )x y z tαψ  are the dynamic potentials, αλ  and αμ  are the Lame coefficients. 
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At the substitution of (1.2) in equation (1.1) the following wave equations 
are obtained 
                           2

1 0, 0c cα α α α α αϕ ϕ ψ ψ−Δ − = Δ − =2
2

− .                         (1.3) 
The general solution of (1.3) is represented as 

                      
*

1 2
*

1 2

( , , , ) ( ) exp ( ),

( , , , ) ( ) exp ( ).

x y z t z i k x k y ckt

x y z t z i k x k y ckt
α α

α α

ϕ ϕ

ψ ψ

= ⋅ + −

= ⋅ + −
           (1.4) 

Pursuant to (1.4) the equations (1.3) are reduced to ordinary differential 
equations for unknown functions  and * ( )zαϕ

* ( )zαψ . Solving these equations for 
dynamic potentials we have 

     1 1 1 2

2 2 1 2

( , , , ) ( sh ch ) exp ( ),

( , , , ) ( sh ch ) exp ( ),

x y z t A z B z i k x k y ckt

x y z t C z D z i k x k y ckt
α α α α α

α α α α α

ϕ ν ν

ψ ν ν

= + ⋅ + −

= + ⋅ + −
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where 
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, 

c  is the propagation velocity of the harmonic wave, 1 2 3, , ( , , )A B C C C Cα α α α α α  

 are unknown constants. 1 2 3( , ,D D D Dα α α α )

,

According to the transformation (1.2) and the Hooke law the displacements 
and stress components are expressed in terms of the dynamic potential by means of 
the following formulas: 
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   (1.6) 

For determination of constants , ,A B Cα α α  and Dα  one should use the boun-
dary conditions and the conjugation conditions on the planes z h= ± . Assuming 
that on the interfacial planes z H= ±  the boundary conditions are specified 
                                   13 33 20, 0, 0uσ σ= = =

h
.                                     (1.7) 

The conjugation conditions in case of z = ±  take the form 
                                               (1.8) (1) (2) (1) (2) (1) (2)

1 2 13 13 23 23 33 33, , ,u u σ σ σ σ σ σ= = = = .
Substituting (1.5) in equations (1.6) and using the boundary condition (1.7) 

and (1.8), we obtain a system of eighteen linear homogeneous equations with 
constants , ,A B Cα α α and Dα . The characteristic equation for determination of 
harmonic wave velocity in a three-layer plate is obtained by equating the 
determinant of this system to zero. Below we consider two versions that are related 
to solving the problem of periodic wave propagation in an elastic layer [6]. 
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2. Consider a partial solution for the first layer 
1 1 11 1 2 11 11 12 1 2

12 12 12 1 2 13 13 12 1 2

sh exp ( ), ch exp ( ),
ch exp ( ), sh exp ( )

A z i k x k y ckt D z i k x k y ckt
D z i k x k y ckt C z i k x k y ckt

ϕ ν ψ ν
ψ ν ψ ν

= ⋅ + − = ⋅ + −
= ⋅ + − = ⋅ + −

 (2.1) 

and for the second layer 
2 2 21 1 2 21 21 22 1 2

22 22 22 1 2 23 23 22 1 2

ch exp ( ), sh exp ( ),
sh exp ( ), ch exp ( ).

B z i k x k y ckt C z i k x k y ckt
C z i k x k y ckt D z i k x k y ckt

ϕ ν ψ ν
ψ ν ψ ν

= ⋅ + − = ⋅ + −
= ⋅ + − = ⋅ + −

 (2.2) 

Solution (2.1) for the first layer corresponds to the antisymmetric form vibra-
tions, and (2.2) for the second layer corresponds to the symmetrical form vibrations. 

Keeping in mind that 1div 0, div 02ψ ψ= = , we obtain after substitution of 
(2.1) and (2.2) in equations (1.6) and are regard for boundary conditions (1.7) and (1.8) 
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(2.4) 

where 2 1/χ μ μ= . 
For existence of nonzero solutions of (2.3) and (2.4) it is required that their 

determinants be zero. From this condition we obtain the following dispersion equation: 

                                             1 1 111
2 2

12 1 1
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η θ ην
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− −
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1 1 1 1 (2 2 )
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a a a a a a
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γη θ η γη χ θ η η χ γη

η χ γη γθη θ η γη η χ

γθη η γη χ γθη γη χ η

− − − − − − − +
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− − − − − − − − =

(2.7) 

where  2 1/k kξ = , thij ija hν= , , 1,i j 2= . 
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From equation (2.5) the wave propagation velocity  is determined as a 
function of wave numbers , the plate thickness 2  and the dimensionless 
parameter 

c
1 2,k k H

1θ . The dispersion relations (2.6) and (2.7) determine the conditions 
imposed on the middle layer of plate to make possible the propagation of a har-
monic wave with phase velocity c . If the ratio , /H h 1 2,θ θ  and γ , as well as the 
value of the phase velocity c 1( )η  of equation (2.5) [7] are known, then from (2.6) 
and (2.7) χ  is found depending on kH . Note that (2.7) is a quadratic equation 
with respect to χ . Fig. 1 (from (2.6)) and 2 (from (2.7)) show the dependence χ  

on  for kH (0 9)kH≤ ≤ / 2H h = , 1
1
3

θ = , 2
1
3

θ =  and 4γ = . 

 

     
                                    
                                   Fig. 1.                                                                             Fig. 2. 

 
3. Now consider the following particular solution for the first layer 

1 1 11 1 2 11 11 12 1 2

12 12 12 1 2 13 13 12 1 2

ch exp ( ), sh exp ( ),
sh exp ( ), ch exp ( )

B z i k x k y ckt C z i k x k y ckt
C z i k x k y ckt D z i k x k y ckt

ϕ ν ψ ν
ψ ν ψ ν

= ⋅ + − = ⋅ + −
= ⋅ + − = ⋅ + −

(3.1) 

and for the second layer 

2 2 21 1 2 21 21 22 1 2

22 22 22 1 2 23 23 22 1 2

sh exp ( ), ch exp ( ),
ch exp ( ), sh exp ( ).

A z i k x k y ckt D z i k x k y ckt
D z i k x k y ckt C z i k x k y ckt

ϕ ν ψ ν
ψ ν ψ ν

= ⋅ + − = ⋅ + −
= ⋅ + − = ⋅ + −

(3.2) 

Solution (3.1) for the first layer corresponds to the symmetrical vibration 
mode, whereas (3.2) for the second layer corresponds to the antisymmetric 
vibration mode. 

Substituting (3.1) and (3.2) in equations (1.6) and using the boundary 
conditions (1.7) and (1.8) and having in mind that 1div 0, div 02ψ ψ= = , we get: 
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2 2
1 11 11 1 2 12 12 13 1 2 12 11 1 12 12 12

2 11 1 1 12 13 12 12 11

12 13 1 1

(( 2 ) )ch 2 ch 2 ch 0,

2 sh sh ( )sh
ch ch ch 0,

k H B ik H C ik H C
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λ μ ν λ ν μν ν μν ν

ν ν ν ν ν ν
ν ν ν ν

ν

+ − ⋅ − ⋅ + ⋅ =

⋅ + ⋅ + ⋅ − + ⋅ =

⋅ − ⋅ + ⋅ =

⋅ + ⋅

shν

1 2 12 0,ik C+ ⋅ =

0,   (3.3) 

kH kH 
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2 2
1 11 11 1 2 12 12 13 1 2 12 11 1 12 12 12
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2 sh sh sh (

ik h B ik h D k k h C k h C

ik h A ik h C k k h D k h D

ik h B ik h D k k h C k

ν ν ν ν ν ν ν

χ ν ν ν ν ν ν ν

ν ν ν ν ν ν

⋅ + ⋅ + ⋅ − + ⋅ =

= ⋅ + ⋅ + ⋅ − + ⋅

⋅ − ⋅ − ⋅ + + 2
2 12 11

2 2
2 21 21 2 1 22 22 23 1 2 22 22 2 22 22 21

2 2
1 1 11 1 11 1 2 1 12 12 11 1 1 12 12 12

2 2
2 2 21 2 21 2 2 2 22 2

)sh

(2 ch ch ch ( )ch ),

(( 2 ) )ch 2 ch 2 ch

(( 2 ) )sh 2 sh

h C

ik h A ik h C k k h D k h D

k h B ik h C ik h C

k h A ik

ν

χ ν ν ν ν ν ν ν

λ μ ν λ ν μν ν μν ν

λ μ ν λ ν μν ν

⋅ =

= ⋅ − ⋅ − ⋅ + + ⋅

+ − ⋅ − ⋅ + ⋅ =

= + − ⋅ − 2 21 1 2 22 22 22

1 11 1 2 12 13 12 12 12 1 21 2 2 22 23 22 22 22

2 11 1 1 12 13 12 12 11 2 21 2 1 22 23 22 22 21

11 11

2 sh ,
ch ch ch sh sh sh ,
ch ch ch sh sh sh ,

h D ik h D
ik h B ik h D h C ik h A ik h C h D
ik h B ik h D h C ik h A ik h C h D

h

μν ν
ν ν ν ν ν ν ν ν
ν ν ν ν ν ν ν ν

ν

⋅ + ⋅
⋅ + ⋅ − ⋅ = ⋅ + ⋅ − ⋅

⋅ − ⋅ + ⋅ = ⋅ − ⋅ + ⋅

shν 1 1 12 12 2 12 11 21 21 2 1 22 22 2 22 21

12 13 1 11 2 12 22 23 1 21 2 22

sh sh ch ch ch ,
0, 0.

B ik h C ik h C h A ik h D ik h D
D ik C ik C C ik D ik D

ν ν ν ν ν ν
ν ν

⋅ + ⋅ − ⋅ = ⋅ + ⋅ − ⋅
⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ =

  (3.4) 

For existence of nonzero solutions of (3.3) and (3.4) it is required that their 
determinants were equal to zero, whence we obtain the following dispersion equation: 

                              
2 2

11 1 1 1

12 1 1 1

th (2 ) (1 ) ,
th 4 (1 )(1 )

H
H

ν η ξ η η
ν η θ η

− − −
=

− −
                        (3.5) 

                                       22
12 22

12
th thh h ν χν ν

ν
⋅ = ,                                     (3.6) 

2 2
1 2 2 2 11 12 21 22 1 2 2 2 11 21

2 2
2 2 12 21 1 2 2 2 2 2 11 22

2 2
2 2 2 2 2 2 2 2 12 22

1 1 1 1 ((2 ) 2)

((2 ) 2) 4 1 1 1 1 ( 1 )

1 1 1 1 (2(1 ) ) 0.

a a a a a a

a a a a

a a

γθη η γη χ γθη γη η χ

η χ γη γθη θ η γη η χ

γη θ η γη χ θ η η χ γη

− − − − − − − +

+ − − + + − − − − − + +

+ − − − − − − − =

(3.7) 

As was mentioned above, having the values of phase velocity c ( )1η  
determined from equation (3.5) and of ratio ,/H h 1 2,θ θ , and γ  from equations 
(3.6) and (3.7), one can find χ , i.e. the Lame coefficient of the intermediate layer 
of the plate, in which the propagation of harmonic wave with phase velocity, equal 
to that with  c 1( )η   of a single-layer plate was possible. 

Note, that when the three-layer plate passes into a single layer, the dispersion 
relations (2.6), (2.7) and (3.6), (3.7) become identities, and in case of 0ξ =  these 
relations coincide with the relevant relations given in [6]. 
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