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EXPLICIT FACTORIZATION OF A (P,Q)-CIRCULANT
MATRIX-FUNCTIONS

G. M. TOPIKYAN"
Chair of Differential Equations and Functional Analysis YSU, Armenia

The paper considers a factorization problem of a matrix-function, obtained
from a circulant by a right and left multiplication by diagonal rational matrix-
functions. Formulas for partial indices are obtained by means of ranks of a finite
number of explicit type matrices. A factorization construction of this matrix-
function based on factorization of finite number of functions is given as well.
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1. Let I" be a Carleson contour, which bounds finitely connected bounded
domain Q,(0€,),Q2 =[0\Q,(0e ). It is known (see [1]) that the singular
integral operator S, defined by the formula

1 1
(Sp)(t)=— [ —(t)dz, teT,
miyT—t
where the integral is understood in a sense of a principal value, is a bounded

operator in the space L (= L,(I")), 1< p<oo. We define projectors P, =%(1 +39)

0 0
and classes of functions L; =ImP, L,=ImP, L =L +C.
Everywhere below we denote the space of n-dimensional vector-columns
(nx n-order matrices) with elements from the linear space X by X" (X™"). The
abbreviations m.-f. and v.-f. will be used for matrix-function and vector-function
respectively. By 7, (k € Z) we denote a function defined by 7, (¢) = t*.
By factorization of a m.-f. G of order nxn in the space L, along the

contour I' we mean the representation G =G AG,', where a) G, e(Lf,)"X",

G.'e (sz)"x", q =L1; b) A=diag[r, ,...,7, ], where k; <...<k, are numbers
p_ n

called partial indices. A factorization of m.-f. G satisfying to the condition
G" e ™ is called generalized, if the operator G_P.G~'I is bounded in L.
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Suppose that ¢, € L, and p,,q; (i =1,...,n) are rational functions with poles lying

outside the contour I, P =diag[p,,...,p,], Q=diag[g,,....q,] and @ =(¢;)] .,
where ¢, = ¢, .,,,i<j,and ¢; =@, ; .., i>j. The m-f. @ is a circulant and,
therefore, a m.-f. G, defined by the equality G =P®Q, we will call (P,Q)-

circulant. The explicit representation of this m.-f. will be:

b9 P99 - Pi4,9,
G- P90, PP - P2q9,Pua
pnq](DZ pnq2¢3 pnqnqol

The present paper suggests a method of an explicit factorization of the m.-f.
G . By the explicit factorization we mean a reduction of a factorization problem of
the m.-f. G to a finite number of factorizations of scalar functions and a finite
number of solutions of linear algebraic problems. The suggested approach is based
on algebraic properties of the Toeplitz operators’ family (see [2, 3]) and extends
the method developed in [5, 6].

n . - .
2. We introduce functions t,z/J.:Zs(J"”(‘ ”(os, j=1,..,n, where

s=1

27i . .
gzexpﬂ and an m.-f. ¥ =diag[y,,...,w,]. It is known that @ =EVE™",
n

, 1 NV
where E =(g(k"])("])) E™ =—(s'(’“])(“]))k L Consequently, G=PE¥YE'Q.

k,s=1 ’ n

n

By the Theorem 3.10 from [4], we have that the m.-f. G admits a generalized
factorization, iff the functions v ;(j =1,..,n) admit generalized factorization.

Below, without loss of generality, we will assume that
,(0),...,q,(0) €0 \ {0} .

Let the functions y,(j=L..,n) admit the generalized factoriza-
tion :y/;tl"(y/;')_]. Then we have G=PE'P"AZ(‘P+)']E‘]Q, where
¥ =diagly, ...y, ], A, =diag[r,,..,t, ] and ¥ =diagly,,...y,].

We define m-f. A=t , PE¥A, and B=(")'E'Q, where
Hwax =Max{x,..., x,}. Then szzmx‘:lg'

Let p, =&, q; =91 We write the polynomials p,;, pir, Gy, G, as

P 4>
follows:  p, = pupis Po=PaPhs 90 =9091> 92 =4929> Where pi, g
(k=1,2) are polynomials, whose zeros lie in (2. respectively. We denote

by p..(q.) (k=1,2) polynomials, which are the least common multiples

1 - o
of  DPiseeosPui (@rr-nqy) - Let A=py -1, —A4, qu—(fB, where

02 Po>
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v, = max deg p;, +deg py,. Then G=t, AB, where Ae(L,)", Be(L)",
i=l,...n

Al e M)H™, Be (M )™, X0 = Xmax + 0o - We define a number v_ =v, + y, -

—Xmin +degq,, +deg pg] + max deg p,,, where y... =min{y,,...,x,}, and polyno-
i=l,...,n

mial ¢ =g, -q, (we denote its degree by v,). Further, we define a v.-f.

4, = pgPy, and n_=deggq, . Consider families of Hankel and Toeplitz operators

0 0
- .- -1 + + . Nt -1 — .7t +
H;:D,(A)—>L,H; :D,(B")—>L,,T,:L,—>L,, p>1, defined by formulas

H;9o=P(t.A'p), Ho=P(z _B"'9),Tp=P(r_;ABp), where jiz_jiU'
J +\F ) j -\b s >4 +\b_; 5 ) s

0
- -1 —\n -1 ny . + -1\ _ +\n -1 n
D,(47)={pe(L,)", 4 pe(L,)"}; D,(B)={pe(L,)",B pe(L,)"}.
J-1
We denote by 3, the space of vector polynomials > qokz" , ¢, €l", in the
k=0

case when j>0 (jeZ), and the space of vector polynomials in z™' of type

-1
> qokzk in the case when ;<0 (j eZ). We will suppose that 3, = {0} . We define a
k=j

family of finite-dimensional operators K; = H ;’H il , JEZ . Denote N; =kerT;.

S
~(v_+j")

Lemma 1. A v.-f. ¢ belongs to N, iff there exists a v.-f. y ekerK,,

such that p =71 jB"]HJT (v). Besides, the following equality is true:
dimN,=v_+n —dimImK ,,jeZ. (1)
Proof. 1t is known that (see [7]) ImH; =ImH |5 ,Jj €Z. Hence, we

~(v-+j")

have the equality H; (kerK ;) = ker(H;.' i Hf) . Therefore, to prove the first part of

Lemma, it is enough to see that p € N, , iff the v.-f. ¢, = T_j_B(D € ker(H;.' - )

Assume that ¢@eN;, then ¢e (L; )" and P(r_;ABp)=0, ie.
0
T ABp=fe (L;,)" . We write the last equality in the form TJ+A_] f= T_],-B(D =, .

We have Be(L)"™ and ¢@e(L))", hence, TfA_]fe(L,J')”. Since
0
Al e M)™, fe(L,)", then P+(TJ,+A_] f) is a rational function, and, therefore,

0
TfA_]fe(L';,ﬂ(Lf)”), L.e. feD;(A_]). It is easy to see that H, f =¢, and
B o, =7 pe(L,), ie ¢, €Dy (B™) and Hjp,=P (TJ_B_IQDO)ZP_ (9)=0.

Thus, ¢, €ker (H; |rmH;) .
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Conversely, assume that ¢, = r_j_qu € ker (H;.' |y ). The equality

ImH; =ImH |5 implies the existence of [fe3J such that

—(v_+j") (U_+j+) ’
@ =H;fe(L)". Since H;p,=0, then 0=P (TJ_B_](DO) =P (TJ_B_]T_j_Bgo)
=P (p) ie. pe(L,)" .
According to the definition of ¢, rj_qu =H,f= P+(Tj+A_] =
= TJ+A_] f-P (TJ+A_] f). Consequently, f —T AP (TJ+A_] f)=1_;ABg . Taking into

0 n
account that f e RIS and 4™ € (M,)™, we get r_.AP (rfA']f) € [L,'J , 1.e.

T.o=P(f —TJ+AP_ (TJ+A_] f))=0, which proves the first part of our Lemma.

It remains to observe that dimN, = dim(ker(H;.’ ) =dimlmH ;-

|Im

. N L L . - "
—dimImH; | =dimImH; —dimImK; and dimImH; =v_+nj" (see [7]) to

ImH]T
complete the proof.
We define the m.-f. U=7, P (T_U_B_])P+(T_U_A_]) and square matrices

() () () i ; () —« R
blis @i, ul  (mk,jeZ), given by b)i=<B > ikt

agy =<A"'>,,,, when m<k and a,; =0 when m2k, w}=<U>_ . .

where for a m.-f. @ by <®>  we mean the following  matrix:
1 .

<®d >k=T'|.t‘k‘](D(t)dt. For j>-v_ we define the block matrices A;, B;, U,
i 7

. =[] ) |[f=0sni 0 1| () (k=00 1 W G) (k=00 1
8, by BB A gy [T U ) e,

&,=U;+B;A;, where j'=max{ju,}. For jeZ we also define

1
by the formula y,g= > q,t* , where
k=—(v_+j*)

mappings - CMO-+) =3
q= [Q_(U_+j+):---:q4]: qk ell " (k = _(U_ +j+):"':_1) .

The following statement is true:

Lemma 2. 1If j<-v, then dimN;=0. If j>-v_, then

dimN; =v_+ nj— r;, where r;=rangR;. Besides, if jzv then

dim N, =v_+nj-ndeggqy, —g(degql} —degq;,) -
Proof. Since pg-pe T, A€ (L))" and g B e (L,)"™", the following
equalities are true:

Y<dls, <q,>=0,m=v_+l,.., ()
k=0
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v+
><B'> ,<q >=0,m=-1,-2,... A3)
k=0

Let j<-v, gekerK, and ¢=H ,q. Then it is obvious, that
peR"((L,)" . According to Lemma 1, a v.-f. y =er']go eN,; and we(L)".

Since ¢ =7_By, then <@>;=..=<¢>_, ;=0. The last equalities mean that

U_ —00 L_

-1 . m -1
D<A >, ,<q>,=0(m=0,.,0_-1), since p= Y zZ"Y <A > ,.<g>,.
k=0 m=—j-1 k=l

Hence, using (2) and observing that <g, >,#0 and n_<v_, we obtain

< -1 _ - <q,>; A—l _
<§0>—]:Z<A >_,-+k<Q>_k——ZZ—< > ki <GP =

k=1 k=li=1 < g, >
<4 > ¥ -1
=— LY <A > . <qg>,=0.
;<q+ >O/; J+k k
Similarly we get <¢>_; ,=<¢@>_,,=...=0, ie. ¢=0. The Lemma 1

implies that N, ={0}.
0 n
Let now j>-u_ while qu_(U e Using T-P_(Tf,_]A_])qe(L;J ,

-1 +\1 . -1 _ 1 a
T, B, ALy and equality 4 =7 P, A+t P(e .\ P, A+
+TU_P+(T_U_A']) , we obtain that H g = L. P+(T_U_A_])C] + g, where

v_+j -2

gn=P(t, 7, P, P, A= Y <g>1",
- k=0

1
<g>= > <A'>  <g>

m=k—(v_+;" )+

T, P(r,B ), P(r, A ge(L)", we get that HiHq =P (z, Uh) +Hjg,

Hence, taking into account that

where h=1_ 4 Consequently, the condition K g =0 is equivalent to the follow-

ing infinite system of equalities:

v_+j -l v+jt=2 ]
Y <U>  <h>+ Y <B >

. <g>=0, m=-1,-2,...
=0 =0 /

k

It is easy to see that (<h >§,. .<h >Z o )= y/;‘q and

T

T
(< g >0 :"':< g >U_+j+—2’

0) = Ajy/;]q . The remark above implies that the condition
gekerK; is equivalent to the equality U jq/;]q+Bjqu/;]q =0. By writing the
last equality in the following form R jq/;]q =0, we finally obtain that K ;g =0,

iff ﬁjq/;]qzo. Consequently, dimker K; =dimker& ;. In view of (1) the

following equality is true:
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dimN; =v_+nj" —dimImK; =v_+n" —(n(v_+j")—dimker K ,)=v_+nj" ~r;.

It remains to prove the last statement of our Lemma 2. Let j>v, and
0 0
qe3;, then ¢=1 4qe(L)", ¢e D;(A_]) and H ;p=q. Consequently,

3,clmH;. A v.-f yeD;’(B']) we write as follows y=g+gq_y,, where
Yo eD;’ (B™"), while § is a vector polynomial, whose degree does not exceed
v,—1. We have ¢ By, e(L)'NL, (e q.B7'y, e(L,))"), and, there-
fore, the equality B 'y=B"'g +q_B‘]yO implies that Hjy=H,q, ie.
Im H; =1m(Hg N )
0 0

The operator T':D,(B)— (L))" is defined by formula T’y =P (By). We
prove that ker7'=Im H . Assume that ¢ € Im ;. Then there exists y €3, such
that o=H;y=P (B'y). Now Bp=y-BP.(B'y), BP.(B'y)e(L])" implies

0

Bpe(L)'(\L;, ie ¢@ekerT'. Conversely, if ¢ekerT,pe(L)" and
Bp=ye(L)", ie. ¢=B"'y =P (B 'y)=Hyy . B admits a left factorization in
L, (see [4]), and, as it is known, dimker7" coincides with the sum of positive
partial indices of B. Since B is analytic inside the circle, then its partial indices
are nonnegative (see [4]). Therefore, dimker7’ coincides with total index of B. On
the other hand, total index of B is equal to the number of zeros inside 2, (by
taking into account their multiplicities) of function detB. Thus,
dimImH; =ndegqy, + > (degg, —deggq,,). For j >0 we obtain

i=1

ImH; SImK, = Im( : =Im(Ho+ I, ,,) > Im(HJ |3,) ;

‘H/_’(T—(u_m))
and for j>v, we get ImH;>ImK, DImH;. Consequently, we have

dimImK = dimImH;, j>v,,and the Lemma is proved.

Note that, particularly, the following statement is proved:
Corollary 1. For j>—v_ the following equality is true: kerK ; =y ker K.

Theorem 1. The partial indices of m.-f. G can be calculated by formulas:
K, =—U_+x,+card{j:n, —r;+r,; <i, j=-v_+l...,0,+2)}, 4)
where r, =v_, r,=rang&, (j>-v_) and 0, =1, j>0,0,=0, j<O0.
Proof. 1t is known that dim N is equal to the sum of negative partial indices

of the m.-f. 7 G with the minus sign. The partial indices of the m.-f. 7_, . G

—(xo0+/)
are equal to k,—y,—j (i=1...,n). As we have j>kK —y,, then dimN,>0.

Consequently, —v_ <k, — x,, . Similarly (see [5]), it is not difficult to see that
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K;— Xo =1_ +card{j‘dimNj —dimN,  <i, j=n_+L...n.},

where n_,7n, are arbitrary integer numbers satisfying to 7 <k, —yx,<..
.<K, =¥, <n,. We can take 1_ to be equal to —v_, while by Lemma 2 we can
choose 7, to be the number v, +2. Taking into account also the equality
dimN; —dim N, , =n0, +r,, —r;, we get (4).

Lemmas 1 and 2 imply that N, = {rj_B‘]H(rj+A‘]y/jq), gekerR;}, j>-u_.
We denote ZV]. =N,+7N;={p+ty;p,y eN,} and N;(0)={p(0),peN,}. Itis
known (see [3]) that N ;S N,,,Jj€Z. Wedenote by M ; some direct complement
of N ; In N,.,. Spaces M (see [2]) are called (p,/)-index subspaces. We denote
& =xK,—xo+1(i=1,...,n) . Itis known that N, ={0} for j<& -1 and N;=N,,
for all jeZ\{,,...,&,} . The following statement follows from [3]:

Proposition 1. Assume @,...,¢,, (i=1,...,n, m,€ll) are bases in the space

M, ;. Then T_ZOGzG_AG;], where G, =[@) 501, s Paseees Py sees Pptseeos P 1,
A=diag[7; ,...,7; ;] and G_= G,G,.A™'is a factorization of a m.-f. r,G.

Assume that K]'.=[<A‘] > _j_,...,<A‘] >_;1. We call the vectors

q; =[q},...,qf-+5f+] (qf el i=1,...,n; k=1...,0+&") a factorization collection
for the m-f. G, if R,q, =0, i=1,...,n, while vectors Kél q],...,Ké"qn are linearly
independent.

Proposition 2. A m.-f. G possesses a factorization collection.
Proof. Let ¢ € N, then there exists a vector ¢ =[q_(u +j+),...,q_]] ekerf,

g, el",s=(-v_+j",...,—1), such that ¢(¢) = t7 B (t)P+(Tj+A_]q/jq) .

1 + —l -1 _ P A
<t Ayq>,=—[ A7) Y qit"di= Y q—".jA Yo s =
J 27i i f—v " 2T
-1

= X <4'> a4

k=—v_+j"

The v.-f. ¢ is analytic in €2, , and hence, it can be de expanded into the

m=0

) —1 -
series (o(t)zB'](t)Z[ > <4 > ke qk}m” in a neighborhood of 0.

k=—v_+j*
Besides, N;(0)= {B'](O)K;q,q eker &}, since the m.-f. B(0) is invertible. The

existence of a factorization collection follows now from properties of spaces
N;(0) (see [3]). Proof is completed.

Theorem 2. Let q,(i=1,...,n) be a factorization collection for the m.-f. G

and qoizréfB‘]ng/é,qi, i=1,...n, then G, =[g,,...,0,], A=diag[t",...t"],
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G_=GG,A"is a factorization of m.-f. G.
Proof. Lemma 1 and Corollary 1 imply that ¢, e N, (i=1,...,n). Since

¢,(0),...,9,(0) are linearly independent, then ¢, does not belong to ZV;_,.
Consequently, ¢, € M. _,(i=1,...,n). Taking into account linear independence of

av.-f. ¢ (i=1,...,n) we deduce the proof of our Theorem from the Proposition 1.
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