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ON THE OPTIMAL STABILIZATION OF A DOUBLE MATHEMATICAL
PENDULUM HAVING A MOVABLE SUSPENSION CENTER
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The problem of optimal stabilizatioin of a double pendulum, when its suspension
center moved in the horizontal direction according to the given law, has been treated.
The problem was reduced to the case of a linear nonuniform system that was solved in
the event when the first and the second pendulums had equal masses and lengths. An
optimal Lyapunov function and an optimal control action have been constructed.
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Introduction. The problems of stabilization and control of a mathematical
pendulum having a movable suspension center were the subjects of study of many
researchers at different times. As early in 19" century, English researcher
J. Reyleigh [1] has shown, that the lower stable equilibrium position of a pendulum
might become unstable, when its suspension center oscillated at a specific
frequency. An English mathematician In Stephenson proved [2], that it was
possible to keep the pendulum at the upper equilibrium position, if its suspension
center is oscillated in the vertical direction. Then, a comprehensive study of this
problem was conducted by P.L. Kapitsa [3]. The investigation of driven mathe-
matical pendulum is of importance also nowadays, as was dealt with in [4-6].
In [4] the problem of double pendulum stability has been studied for four possible
equilibrium positions, the suspension point of the first pendulum being oscillated at
high frequency in the vertical direction. A comprehensive analysis of studies
concerning the problems of stability, control and stabilization of driven pendulum
is given in [6]. The stabilization problem of a driven single pendulum, when the
suspension center moved in the horizontal direction, was studied in [7].

In the present paper the optimal stabilization problem of a driven double
pendulum is considered, when the upper suspension center is moved in the
horizontal direction according to a given law.

Problem Statement and Equations of Motion. Suppose there is a double
pendulum composed of /; and /; long lightweight rods holding material particles M,
and M, of m; and m, masses respectively. Now assume, that upper pendulum may
swing about the horizontal axis Oz (that is perpendicular to the drawing plane and is
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not seen in the drawing), and the lower pendulum swings about an axis passing
trough the point M, perpendicular to plane xOy. Ox axis has a horizontal direction,
whereas Oy axis is directed downwards
normal to that (Fig. 1).

If we assume, that the upper sus-
pension center O moves in the horizon-
tal direction according to the given law,
then the gravity forces m,g, m,g and

translational inertia loads N, =mx and
N, =m,x will act on the material parti-

cles M; and M, respectively.
Assume also, that the device at the
suspension center acts on OM, rod of

pendulum with controlling moment E .
The coordinates of system will be

uniquely determined by angles ¢, ¢,

made by the vertical and rods /;, [

respectively. The equations of motion of
the system are derived from the Lagrange equations [8]

AfOT ) 0T _p Oy, (1)
dt\ 0¢,

where T and /7 are the kinetic and potential energies respectively, and O, are
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Fig. 1.
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generalized forces. The velocity of point M, v, is equal to v, =/,¢,, and the square
of the velocity of point M, is written as
V=V +v) + 2wy, cosa = 1297 + L g; + 211, cos(p, — p,) .
The kinetic and potential energies can be written as:

ml* m ) _ o
T= 121 ¢712 +72(112(p12 + 122(p22 + 2L L@, cos(p, —@,)) , ()
1T =mgl,(1-cosp)+m,g(l,(1-cosp,)+1,(1-cosp,)). (3)

The generalized forces O, effecting the system are expressed as:
O, =—myl,Xcosp —m, (I, cos @, +1, cos @, )X+ & =—((m, +m,)l, cos g, + myl, cosp, )X +&,(4)
Q) =—mylyicos, . ()
If we insert expressions (2)—(5) into equation (1), we get
(my +m,) I, + moli L, cos(@; — ;) + myli g, sin(gy — p,) =
=—(m, +m,)gl, sing, —((m, + m,)l, cos g, + myl, cosp,)x +¢, (6)
m2122 P, +myl i, cos(y —,) — mzlllz(rblz sin(@y — @,) =—mygl, sing, —m,L,X cos @,
The system (6) may be linearized by assuming, that angles ¢, and ¢, are
small, i.e. cos(¢, —@,) =1, sin(@, —@,) =@, —@,, sing, =¢,, sing, = @,. We have
{(ml + m2)112¢1 +myliLp, =—(my +my) gl = ((my +my)ly +myl,)i + &,

m2122¢2 +myhL¢ = —myglp, —myl)X;

()
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.. m+m, g m, g ml+myl, .. 1
(gl:_#._ 1+_2._ ) — "1 222x 2'};:’
m I, my ml, ml, ®)
p =Tt g, mim g, My 1 .
om L om L ml mllL
Now make the following notations: D =—M~§< 0, H =ﬁ~§> 0,
m, I, my
R:ml+_m2.§>o, S:_—ml+m2.§<0, P:——mlll+’;1212, =" I we
m m myl, ml,
introduce these notations in the set (8), we get
.. |
¢1=D¢1+H¢2+PX+W(§,
111 €))

£

Let us introduce dimensionless quantities by the following notation: 7 =4z,
where & has the dimension of frequency. Hence,

2 2
d°g, D H +Pdf(r)+ 1

P, =R+ S, + Wi —
myl\l,

= — + — ,
e e et e .
d*¢, R S d*f(r) 1
==+, +W - ,
e 2t T Tt
where f(r)zx(%rj. (11)
Now make the following notations: d = 22 , h= ﬂz , = 32 , §= % ,
k k k k
u= %f , L= L . Thus, the system (10) can be written as:
k*myl, [
2 2
d—g?zai(p1 + ho, +Pd (ZT) +u,
dr dr (12)
d’p d’f(v)
?22 =rg +sg, +W o —Lu.
If we introduce in system (12) the phase coordinates by means of the
following notations: x, =¢,, x, =M, Xy =@,, X, =%, then
dr dr
X =X,
2
X, =dx, + hx; +Pd fgr) +u,
. ‘ (13)
Xy =Xy,
2
Xy =X + 85X, +WLT(ZT)—LL¢ :
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Here for simplicity the notation X, :% (==1,2,3,4) was adopted. The
T

obtained system (13) is a controlled system of linear nonhomogeneous differential
equations.

For the existence and uniqueness of the solution of system (13) it is
necessary and sufficient that the system be completely controlled, i.e. rankK =4.
K is the Kalman matrix of the form

0 1 0 d—Lh
1 0 d-Lh 0
0 -L 0 r—1Ls
-L 0 r-Ls 0

K=

It is obvious, that rankK =4 . Hence, the solution u° of system (13) exists
and is unique [9].

Now, let us formulate the optimum stabilization problem for the system (13).

Problem. It is required to find an optimal control action u° such that it
makes the solution x, =x, =x; =x, =0 of system (13) asymptotically stable and
satisfies the constraint

JMul = [ (x3 +x; +u)dr — min . (14)

0
Solution. For the solution of the problem an assumption is made that the
double pendulum is composed of two pendulums of equal masses m with equal

lengths /, and the suspension point is moving, according to x =ne™* (n#0) law in

the horizontal direction.
In this case, the equations of motion (13) become

X, =Xy,
%, =—2x, +x, - 2pe * 4,

: (15)
Xy =Xy,

. —at/k

X, =2x,—2xy+ pe —u.

2

2
/ g na” nla 1 .
Here we have k=,/=, p= = , U= , and for simplicit

/ P gk  g* mi*k? d prety

we make the following notation X, =% (=1,2,3,4). To solve the optimal
T

stabilization problem we use the Lyapunov—Bellman method [9]. In this case the
Bellman expression can be written as
B[-]:a—V+a—Vxl+6—Vx2+a—Vx3+a—Vx4+x§+xf+u2, (16)
or  0ox 0ox, 0Ox; 0ox,
where V =V (x,,x,,x;,x,,7) is the Lyapunov function for system (15). Now,
substitute expressions for X;, X,, x; and x, from (15) into (16). We get
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B[']za—V a—sz ar —2xl+x3—2peif+u +8—Vx4+
or 0Ox 0ox,

X3
(17)
+8—V[2x1 —-2x; +pe71 —uJ+x§ +x§ +1’,
ox,
As OB['] =0, we have oB[ ] - 8_V_8_V+ 2u” =0. Thus, we obtain
ou u:uU ou u:uo 6x2 6X4
W A (18)
2\ ox, ox,

As in the case of optimal control u =", the Bellman expression assumes the
value of 0, we can substitute (18) in (17) and require it to be equal 0. Hence, we obtain

B[] =6—V+6V +6—V[—2x1+x3—2pe_kT]+a—Vx4+

0 %2
u=u" 0t 00X 0x, X,

a 2
+8—V{2x1 —2x, +pe7 ]+xz2 +x; _i(@_V_G_V] =0.

(19)

ox,
The Lyapunov function is sought for in the following form [9]:
V (5,52, X3, %4, 7) = VP (X, X, 25, X,) + V(l)(xl,xz,x3,x4,z') +7VO®), (20
where the function V(z)(xl,xQ,x3,x4) is a quadratic form depending on variables
X, Xy, X3, X, , the VV(x,,x,,x;,%,,7) is a linear function of variables x,, x,, x5,

x, with variable coefficients, and V() is a continuous function of only time 7.
Now introduce the expression of Lyapunov function (20) into (19). We have

QPP P ey )
or o 2 &, 17T%

0O +rv®) oD+
| o . ox,

QD00 o))
4 o, or, B

Now separate the second order terms depending on variables x;, x,, x;, x,,

{2)(1—2)’3 +pez7‘1}+)(22 +x,— (21)

the linear terms depending on variables x,, x,, x;, x, and the terms independent
of variables x;, x,, x;, x, in equation (21) and equate them to O separately. For
the second order terms depending on variables x;, x,, x;, x,, we have
ov? or? o or? 1oV o
Bt (25 )+ (22 4 e | T
a ax, a ax, A dy  ay

for linear terms depending on variables x,, x,, x;, x,, we have

2
] =0 (22)
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ar®m ey 2 ey @ a0 ay® 2oy @
+—x,—2pe * + (—2x; +x3)+—x, + pe * +

or 0Ox, Ox, Ox, Ox, 0Ox, (23)

o 1fov® ov®\or?® or®
+ (2x, —2xy)—— - - =

Ox, 2 ox, Ox, Ox, 0Ox,
And for terms depending only on time 7, we have
(0) AP @A) M m\?
dv _2pe b oV +pe b oV 1fovi’ or 0. 24)
dr 0x, ox, 4\ ox, oOx,

By solving the obtained system of equations (22)—(24), we find
VO (x,%0,%5,%,), VO (x,%,,%3,%,,7) and ¥ (z) functions.
As, in the case of f(7r)=0, the system (13) is completely controlled, the

function ¥ (x,,x,,x;,x,) can be uniquely determined. We seek the function in the
following form:

@) _1 2 2 2 2
Vi (X, %,,%5,X,) = E(Cllxl + Xy 4 Cy3 X5 + Cuy Xy + 20, XX, +203%,X5 + (25)
+2014XX4 +2C53X, Xy + 2054 X, X4 + 2C54X5X,).
For determination of coefficients ¢; (iy=1,2,3,4), we have the following

system of algebraic equations:

1
—2¢p, +2¢y _Z(CIZ _014)2 =0,
1
I+¢, ——(ep _024)2 =0,
4
1 2
Cp3 =205 _Z(czs —¢34)” =0,
1
l+cy _Z(Cz4 _C44)2 =0,
1
€1 =20y 20y, _5(012 = ¢13)(¢5; =€) =0, (26)
1
Cy —2¢14 —2¢y; +2¢5, —5(612 =)y —c34) =0,
1
O3 =204 + 204y _5(012 =014 )(Cyq —C44) =0,
1
3+ Cp =20y _E(sz =y )3 —C3y) =0,

1
Ciy tCoy3 _E(sz - 024)(024 —Cy) =0,

1
Coy +Cy3—2eyy _5(023 —C34)(Cyq —C4y) =0.

From solutions of system (26) we choose that one, in case of which, the
function V¥ (x,,x,,x;,x,) is positively defined. For our system the solution has
the following form:



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 3, p. 31-39. 37

e #6.515172, ¢, #1.652967, ¢ ~-0.209687, c, ~1.652967,
cy, ~7.651655, 5, ~—1.823735, ), ~4.394069 , ¢}, ~4.647082, (27)

cy, ©—0.997252, ¢, ~4.498912

(these coefficients were determined by means of computer program Mathematica 7
to within 10°® accuracy).
Now insert these coefficients in expression (25). We obtain

&) Lo, 02, 02, 02 0 0
V(x5 %y, %5, X,) —E(c“x1 + CypX5 + Cy3X5 + Cag Xy +201,X,%, + 2015%,%5 +

HF2C0,0,X, + 2055, X, + 209,%,X, +205,%;%,) = 3.257586x +3.825827x; + (28)
+2.323541x; +2.249456x; ++1.652967x,x, —0.209687x,x; +1.652967x,x, —
—1.823735x,x; +4.394069x,x, —0.997252x,x,.
Now determine V(l)(xl,xz,x3,x4,r) function from equation (23). If (28) is
introduced in (23), we have
ov®  ar® ov® ov® ov®
+ X, +

=2x+x3)+—x, +—(2x, - 2x;) +
L BRI et R oo U R

+P67T (=2(C50X, + €y, + €535 +ChuX, )+ (ChgXy + €Ly, +CouXy +C4X3)) — (29)
o ar?
—_— =0.
ox, ox,
The function V" (x,,x,,x;,Xx,,7)is sought in the following form:
V(l)(xl,xz,x3,x4, 7) =y (0)x + 1, (0)X, + ¥ (D) x5 + v, (7) x4, (30)
where y,(7), »,(7), y;(r) and y,(r) are unknown functions of 7. Inserting (30)
in (29), we have
ViXy + 00Xy + P3X + VX + 01X + 15 (22X +065) + X, + 3, (2% = 2x3) +

1 o 0 0 0 0 0 0 0
) (22, F €132 + 035 +Cu%y) = (CaXy + %y + Xy +634%3))

+ pe\kr ((—20102 + clo4 )X, + (—2032 + c(2]4 )x, + (—26§3 + cg 4)X + (—2cg4 + cg4)x4) — 31

1
Y U =w )((‘7102 _0104))‘1 + (ng _‘734 )x, + (‘733 _024 )x; + (024 _024 )x,)=0.

Now separate the coefficients of variables x,, x,, x;, x, and equate them to
0 separately. Thus, we obtain a system of linear nonhomogeneous differential
equations for determination of y,(7), y,(7), ¥;(z) and y,(r) functions:

Vi =ay, —ay, — pbe *,
V== +ay, —a,y, —pbe * (32)

V3 =azy, —(ay—1)y, — pbe * ,

a
Vi=a4y,—y3—ays—phe b,
where the following notations were made:
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ci — iy —a,, ¢~ Coy —a,, _1+C33 — iy = a;, €21~ Cas _
2 2 2 2
2¢) +cly=b, 25 +ch =b,, 2+ =b, -2c),+ch, =b,.
We have for numerical values of coefficients
a,~2,a,~1.628793, a; ~-1.413242, a, ~—0.052422,
b =-1.65297, b, ~-10.9092, b, ~2.65022, b, ~—4.28923.  (33)

2+ a,,

Here for simplicity we adopted the following notations X; =% (i=1,2,3,4). The
T

solution of system (32) is determined by using the Cauchy formula [10]:

. —}( ~1.900079+3.951708 0.247112+9.213856k) »
w(e)=kpe 1+0.228166k +0.569432k>  1+1.45304k +3.51227k )’ 9
iy Ye( —8487157-0265233k . —-2.422084+3.939016k
w'(7)=hve [1+O.228166k+0.569432k2 +1+1.45304k+3.51227k2)’ )
i e 1.826889+3.612668k 0.82333—7.065952k
w'(7) =hve (1+0.228166k+0.569432k2 +1+1.45304k+3.51227k2j’ (36)

o —%r —6.294537+0.275749% —2.005312+0.591238k
vy’ (z)=kpe -+ _|. (37
1+0.228166k +0.569432k~  1+1.45304k +3.51227k
The optimal function ¥ (x,,x,,%,,x,,7) is determined by inserting y,(z),
¥,(7), ¥3(r) and y,(r) functions from (34), (35), (36), (37) in (30).
As for the optimal control action we have expression (18) and the function
v oy

X, ox,

V' is only z dependent, i.e. =0, then we may omit the calculation

of 7 function. Consequently, the optimal control action can be determined by
means of the following expression:

(2) (2) © o)
u(’:_l o orv +8V oy ' (38)
2( ox, ox, ox,  Ox,
Now insert (25) and (30) into (38). We obtain
1
== ((ely =) + (3 = 2% + (e = €5+ (chy = )xy) =
39)

1 1
—Eyg(f) +§y2(f)-
If we insert (27), (35) and (37) in (40) and do simplifications, then we obtain for u°
u® (x,,%,,%;5,%,,7) = —1.62879x, +0.413242x, +0.0524218x, —
[ _(£1.990251+0.001563k)(0.327772 +0.059833k + k) (41)
(1.756139 + 0.40069k + k*)(0.284716 +0.413706k + k*)

Thus, the optimal control action 1’ determined by means of expression (41)
is the required control action.

Received 29.03.2011
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