
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2011, № 3, p. 40–46

I n f ormat i cs

ON SLDNF-RESOLUTION IN LOGIC PROGRAMMING WITH NEGATION

L. A. SARGSYAN

Chair of Programming and Information Technologies YSU, Armenia

The paper is devoted to the logic programming with negation and with built-in
predicates. General logic programs (logic programs with negation) and general
goals (goals with negation) are considered. Modification of SLDNF-resolution for
built-in predicates is introduced. The soundness of modified SLDNF-resolution is
proved. SLDNF-resolution used in real systems (practical SLDNF-resolution) is
considered and the soundness of practical SLDNF-resolution is proved.

Keywords: logic programming, negation, built-in predicates, SLDNF-resolu-
tion, soundness, practical SLDNF-resolution.

Introduction. The foundations of Horn programming and SLD-resolution

with built-in predicates are investigated in [1]. Logic programs described in [1]
lack sufficient expressiveness for many situations. The problem is that often a
negative literal is needed in the body of program clause. It is important to extend
the definition of programs to include negative literals in the clause bodies. Logic
programming systems also require a mechanism for handling negative subgoals.
The method usually chosen is SLDNF-resolution, which is the augment of SLD-
resolution with the negation as failure rule [2]. In [2] SLDNF-resolution is
investigated in pure logic programming. However, real logic programming systems
use both negation and built-in predicates. In this paper the SLDNF-resolution in
logic programming with negation and with built-in predicates is introduced. In
order to justify the use of negation as failure rule the completion of program is
modified. The soundness of SLDNF-resolution is shown for this case. SLDNF-
resolution rules used in real systems, i.e. practical SLDNF-resolution, is considered
and the soundness of practical SLDNF-resolution is proved.

Notation and Background. Consider three nonintersecting sets , and
X. is a set of functional symbols each possessing an arity. For any n 0,
contains a countable number of symbols of arity n. X is a countable set of
variables. Terms are composed of elements of sets and X. By Var(t) we
denote the set of all variables involving in the term t. The set of all terms with no
variables is denoted by M.

We assume also that 12, where 1 is the set of predicate symbols,
2 is the set of built-in predicate symbols, each k-ary (k > 0) built-in predicate is

 E-mail: lusine.sargsyan@ysu.am

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 3, p. 40–46.

41

being a calculable mapping Mk{true, false}. The atoms are defined as usual [2].
A formula of the first-order predicate logic with equality over logical operations
, , , , and quantifiers and is defined conventionally [2]. A predicate
term is an atom, which uses predicate symbol from 1. A literal is a predicate term
or the negation of a predicate term. A ground literal is a literal with no variables.
A condition is an atom or the negation of an atom, which uses predicate symbol
from 2.

A substitution σ is a set {t1/x1,…,tn/xn}, where ti is a term, xi is a variable,
ti≠xi, i≠j xi≠xj, i,j=1,…,n, n 0. The following denotations are introduced:
Arg(σ) = {x1,…,xn}, Var(σ) = Var(t1)…Var(tn). The composition of substitu-
tions is defined traditionally [2].

Atoms (or terms) A1 and A2 are said to be unified, if there exists a
substitution such that A1 = A2. The substitution is called the unifier of A1 and
A2. A unifier is called the most general unifier of A1 and A2 (= mgu(A1, A2)), if
for any unifier there exists a substitution such that = .

In this work the set of Herbrand interpretations [1], denoted by H, are
considered.

The value of a closed formula F on the interpretation I is defined in the
natural way and denoted by ValI(F). The formula F is termed identically true, if
F takes the value true on any interpretation from H. If F and F ' are closed
formulae and the formula F F ' is identically true, we will say that F ' is a
logical consequence of F and denote this fact by F|F '.

A general logic program (or simply program) P is a sequence S1,…,Sn of
clauses, n > 0. A clause S{S1,…,Sn} has the form A:-K1,…,Km, where A is a
predicate term, each K{K1,…,Km} is a literal or a condition, m 0. Atom A is
called the head of the clause S, the sequence K1,…,Km is called the body of S.
If m = 0, S is termed a fact, else S is termed a rule. With the program P
we associate the formula comp(P):

F(p1)& … & F(pu),
where p1,…,pu are the predicate symbols from program P, pi 1, i = 1,…,u,
u 1, and every F(p), where p {p1,…,pu}, is defined in the following way:

If p is a 0-ary predicate symbol and p is a fact of program P, then
F(p) is p, else if p does not appear in the head of any clause of P, then
F(p) is p, else if the definition of p is p:-B1,…,p:-Bv, where Bi is the body
of the clause p:-Bi, i=1,…,v, v 1, then F(p) is pE1…Ev, where Ei is
y1…yd(K1& … &Km), y1,…,yd (d 0) are the variables of the rule p:-Bi, and
Bi is K1,…,Km, m 1, i = 1,…,v.

If p is an n-ary (n > 0) predicate symbol and p does not appear in the
head of any P program clause, then F(p) is x1…xnp(x1,…,xn), else if the
definition of p is A1:-B1,…,Av:-Bv, where Bi is the body of the clause Ai:-Bi,
i = 1,…,v, v 1, then F(p) is x1…xn(p(x1,…,xn) E1…Ev), where x1,…,xn
are variables not appearing in the clauses A1:-B1,…, Av:-Bv, each Ei has a
form y1…yd(K1&…&Km), y1,…,yd (d 0) are the variables of the rule Ai:-Bi,
and Bi is K1,…,Km, m 0, i = 1,…,v.

A general goal (or simply goal) Q has the form ?-L1,…,Ln, where Li is a
literal or a condition, i = 1,…,n, n 0; number n is called the length of the goal Q.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 3, p. 40–46.

42

The goal Q is identified with the formula y1…ys(L1&…&Ln), where y1,…,ys are
the variables involved in the L1,…,Ln, n 1, s 0. We denote the set {y1,…,ys} by
Var(Q). If n = 0, Q is called an empty goal.

Let us describe the set of answers to a nonempty goal Q to a program P in
accordance with logical semantics and denote it by Log(P,Q).

If comp(P)| ≠ Q and comp(P)| ≠ Q, then Log(P,Q) = ;
if comp(P)| = Q, then Log(P,Q) = {no};
if comp(P)| = Q and Var(Q) = , then Log(P,Q) = {yes};
if comp(P)| = Q and Var(Q) = {y1,…,yr}, r>0, then Log(P,Q) consists

of all such collections of terms <t1,…,tr> Mr, for which P|= Q, where
 = {t1/y1, … ,tr/yr}.

SLDNF-Resolution in Logic Programming with Negation for Built-in
Predicates. Procedural Semantics. Now we describe the set of SLDNF-
resolution rules (computation rules). Each computation rule is defined via
functions Sel and Sub. Let Q be a goal ?-L1,…,Ln, n 1, Sel(Q){1,…,n}.
Let Sel(Q) = j (1≤ j ≤ n). If Lj is a literal, then Sub(Q) is undefined. Let Lj
be a condition. So, Sub(Q) is a set of substitutions and for any σ Sub(Q)
the following conditions are satisfied:

1. Arg(σ) Var(Lj),
2. Var(σ) (Var(Q)\Var(Lj)) = ,
3. Val(Ljσγ) = true for any substitution γ such that Var(Ljσγ) = , and

for any substitution , where Var(Lj) = and Val(Lj) = true, there exists
σ Sub(Q) and γ, so that Lj = Ljσγ.

We specify the class of safe computation rules and denote it by R. A
computation rule is safe, if having selected a ground negative literal A in
some goal, attempts to finish the construction of a finitely failed SLDNF-
tree with root ?-A before continuing with the remainder of the computation.
If selects a nonground negative literal, then rejects the goal.

Let P be a program, Q be a nonempty goal and R. Then the SLDNF-tree
for (P,Q) via is defined as follows:

1. Each node of the tree is a goal.
2. The root node is Q.
Let ?-L1,…,Ln (n1) be a node of the tree and Sel(?-L1,…,Ln) = j (1 ≤ j ≤ n).
3. Let Lj be a positive literal, then this node has a descendant for

each clause A:-K1,…,Km (m 0) from program P, such that Lj and A are unifiable.
The descendant is ?-L1σ,…,Lj-1σ,K1σ,…,Kmσ,Lj+1σ,…,Lnσ, where σ = mgu(Lj,A).

4. Let Lj be a ground negative literal. If the subgoal Lj is successful,
the single descendant of the node is ?-L1,…,Lj-1,Lj+1,…,Ln. If the subgoal Lj
fails, the node has no descendants.

5. Let Lj be a condition. If Sub(Qi) ≠ , then this node has a descendant for
each Sub(Qi). The descendant is ?-L1,…,Lj-1,Lj+1,…,Ln. If Sub(Qi) = ,
then this node has no descendants.

6. Nodes which are the empty goal have no descendants.
Let P be a program, Q be a nonempty goal and R. If SLDNF-tree for

(P,Q) via is finite, contains no branches, which end in the empty goal, and
contains at least one derivation of rejected goal, then the goal Q is also

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 3, p. 40–46.

43

rejected by . A finitely failed SLDNF-tree for (P,Q) via is one which is
finite, contains no branches, which end in the empty goal and contains no
rejected nodes.

Let P be a program, Q be a nonempty goal and R. An SLDNF-derivation
Q1,Q2,… of (P,Q) via , where Q1 = Q is defined as follows:

Suppose Qi (i > 0) is ?-L1,…,Ln (n 1) and Sel(?-L1,…,Ln) = j (1 ≤ j ≤ n).
If Lj is a positive literal, A:-K1,…,Km (m 0) is a clause from P and

σ = mgu(Lj, A), then the derived goal Qi+1 is ?-L1σ,…,Lj-1σ,K1σ,…,Kmσ,Lj+1σ,…,Lnσ.
If Lj is a ground negative literal A, an attempt is made to construct an

SLDNF-tree with ?-A at the root. If the goal ?-A succeeds, the subgoal A fails and
so the goal Qi also fails. If A fails finitely, the subgoal A succeeds and the derived
goal Qi+1 is ?-L1,…,Lj-1, Lj+1,…,Ln.

If Lj is a condition, Sub(Qi) ≠ , Sub(Qi), then the derived goal
Qi+1 is ?-L1,…,Lj–1,Lj+1,…,Ln.

Now we describe the set of answers to a nonempty goal Q to a
program P corresponding to the procedural semantics based on a computation
rule R and denote this set by Proc(P,Q).

If the goal Q is rejected by the rule , then Procρ(P,Q) = ;
if (P,Q) has a finitely failed SLDNF-tree for (P,Q) via , then

Procρ(P,Q) = {no};
if (P,Q)| ρ?- and Var(Q) = , then Procρ(P,Q) = {yes};
if (P,Q)| ρ?- and Var(Q) = {y1,…,yr}, r > 0, then Procρ(P,Q) consists of

all such collections of terms <t1, … ,tr> M r that there exist an SLDNF-derivation
of (P,Q) via , which end in the empty goal and such substitution that
{t1/y1,…,tr/yr} σ1…σk–1, where σi is the substitution corresponding to the
application of the rule ρ that results the goal Qi+1, i = 1,…,k–1, k > 1.

Soundness of SLDNF-Resolution. Let us state three Lemmas omitting
their proofs.

L e m ma 1 . Let P be a program, Q be a nonempty goal ?-L1,...,Ln, R,
Selρ(Q) = i (1 i n) and Li be a predicate term or a condition. If there are no
derived goals of (P,Q) via one application of the rule , then comp(P)|=Q.

L e m ma 2 . Let P be a program, Q be a nonempty goal ?-L1,...,Ln, R,
Selρ(Q) = i (1 i n), Li be a predicate term and {Q1,...,Qr} (r > 0) be the set
of all derived goals of (P,Q) via one application of the rule , Q j ≠ ?- (1 j r).
Then comp(P)| = Q Q1... Qr.

L e m ma 3 . Let P be a program, Q be a nonempty goal ?-L1,...,Ln, R,
Selρ(Q) = i (1 i n), Li be a condition and D is the nonempty set of nonempty
derived goals of (P,Q) via one application of the rule . Then for any
interpretation I

ValI(Q) = true there exists Q' D such that ValI(Q') = true.
T h eo r e m 1 . Let P be a program, Q be a nonempty goal and R. Then,

if (P,Q) has a finitely failed SLDNF-tree via , then comp(P) | = Q.
Proof. We use the mathematical induction on the number m of negative

subgoals selected during the construction of the finitely failed SLDNF-tree
(including construction of subsidiary trees). Suppose first that m = 0. Then the

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 3, p. 40–46.

44

result follows by a straightforward induction on the depth of the tree, using
Lemmas 1, 2 and 3.

Assume the hypothesis holds for k < m (m > 0). Consider a finitely failed
SLDNF-tree for (P,Q), construction of which requires the selection of m
negative literals. There is at least one goal, selected literal of which is negative,
appearing on the main tree. Consider a goal G of the least depth h in this tree,
selected literal of which is negative. Let G be ?-L1,...,Ln, Selρ(G) = i (1 i n,
n > 0) and Li is A, where A is ground predicate term. There are two cases
to consider.

a) Goal ?-A fails.
Thus, subgoal A is deleted from G. The derived goal G' has the form

?-L1,...,Li-1,Li+1,…,Ln. By the induction hypothesis, comp(P)| = G'. G' has the
following form: (L1...Li–1Li+1...Ln) (L1…Li–1Li+1…Ln),
consequently comp(P)| = (L1…Li–1(А)Li+1…Ln). It is obvious,
that the formula (L1…Li–1(А)Li+1…Ln) is G, therefore,
comp(P)| = G.

b) (P,?-A) has an SLDNF-derivation, which ends in the empty goal.
If for certain nonempty goal Q', we have (P,Q')|ρ?- and the number of

negative subgoals selected during the derivation is less than m, then by
induction on the derivation length and using induction hypothesis, Lemmas 2, 3,
we obtain that comp(P)| = Q', therefore, comp(P)| = A. Since G' is the formula
(L1…Li-1АLi+1…Ln) and comp(P)| = А, then it is evident that
comp(P)| = (L1…Li-1АLi+1…Ln), i.e. comp(P)| = G'.

Let {Q1,…,Qr} be the set of all goals of depth h, r > 0. We have
comp(P)| = Qi for any i = 1,…,r. Using the fact, that selects no negative
literals to the depth h and Lemmas 1, 2, 3, we obtain that comp(P)| =
= Q Q1…Qr. Consequently, comp(P)| = Q. �

T h eo r e m 2 . Let P be a program, Q be a goal ?-L1,…,Ln (n 1) and
 R. Then, if (P,Q) has an SLDNF-derivation, which ends in the empty goal,
σ1,…,σs (s > 0) is the sequence of substitutions using in this derivation, then
comp(P)| = y1…ym((L1…Ln)σ1…σs), where y1,…,ym (m≥0) are the variables
appearing in (L1…Ln)σ1…σs.

Proof. We prove by induction on the length s of SLDNF-derivation.
Suppose first that s = 2. This means that Q has the form ?-L1. We

consider 3 cases.
a) L1 is a predicate term. Thus, P has a fact A and L1σ1 = Aσ1, where

σ1 = mgu(L1,A). Since comp(P)| = (Aσ1), then comp(P)| = (L1σ1).
b) L1 is a ground negative literal of the form A, and (P, A) has a

finitely failed SLDNF-tree via . Theorem 1 shows that comp(P)| = A, i.e.
comp(P)| = L1 and σ1 is an empty substitution.

c) L1 is a condition. Then Subρ(Q) ≠ and σ1 Subρ(Q). It follows from
definition of the set Subρ(Q), that ValI((L1σ1)) = true for any substitution I and
comp(P)| = (L1σ1) can be argued.

Next suppose that s > 2. Assume the hypothesis holds for derivations with
the length less than s. Consider the SLDNF-derivation Q1,Q2,…,Qs, where
Q1 = Q, Qs = ?-, σ1,σ2,…,σs–1 is the sequence of mgu's used in this derivation,

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 3, p. 40–46.

45

Q has the form ?- L1,…,Ln, where n > 0. Let Sel(Q) = i, i {1,..,n}. We
consider three possible cases.

a) Li is a predicate term. Then P has a clause of the form A:- K1,…,Km
(m 0), such that Li and A are unifiable and σ1 = mgu(Li,A). The goal Q2
is ?-L1σ1,…,Li–1σ1,K1σ1,…,Kmσ1,Li+1σ1,…,Lnσ1. By the induction hypothesis
comp(P)| = ((L1σ1…Li-1σ1K1σ1…Kmσ1Li+1σ1…Lnσ1)σ2…σs-1). Thus,
if m > 0, comp(P)| = ((K1…Km)σ1σ2…σs–1). Consequently, comp(P)| =
= (Aσ1σ2…σs–1) and comp(P)| = ((L1σ1…Li–1σ1Aσ1Li+1σ1…Lnσ1)σ2…σs–1),
since Aσ1 = Liσ1, then comp(P)| = ((L1σ1…Li–1σ1Liσ1Li+1σ1…Lnσ1)σ2…σs-1),
i.e. comp(P)| = ((L1…Li-1LiLi+1…Ln)σ1σ2…σs-1).

b) L1 is a ground negative literal. It follows from Theorem 1 that
comp(P)| = Li and σ1 is an empty substitution. The goal Q2 is ?-L1,…,Li–1,Li+1,…,Ln.
By the induction hypothesis comp(P)| = ((L1…Li–1Li+1…Ln)σ2…σs–1).
Since σ1 is an empty substitution, comp(P)| = Li and Li contains no variables, then
comp(P)| = ((L1…Ln)σ1…σs–1).

c) L1 is a condition. Then Subρ(Q) ≠ . The goal Q2 is ?-L1σ1,…,Li-1σ1,
Li+1σ1,…,Lnσ1, where σ1 Subρ(Q). By the induction hypothesis

comp(P)| = ((L1σ1…Li–1σ1Li+1σ1…Lnσ1)σ2…σs-1), i.e.
comp(P)| = ((L1…Li–1Li+1…Ln)σ1…σs–1).

It follows from definition of the set Subρ(Q) that ValI((Liσ1)) = true for any
interpretation I and comp(P)| = (Liσ1). So we obtain that comp(P)| = (Liσ1…σs–1)
and, consequently, comp(P)| = ((L1…Ln)σ1…σs–1). �

Corollary to Theorems 1 and 2. Let P be a program, Q be nonempty goal
and ρ R. Then Procρ(P,Q) Log(P,Q).

Practical SLDNF-Resolution. In practice we use computation rules with
definition domain less than the definition domain of rules of the set R. Let ρ R.
Define the set of practical computation rules Rρ. Each rule ρ' Rρ, as well as the rule
ρ, corresponds to two functions Selρ' and Subρ', such that Selρ' = Selρ, the definition
domain of Subρ' is a subset of the definition domain of the function Subρ, and if
Subρ'(Q) is defined for nonempty goal Q, then Subρ'(Q) = Subρ(Q).

Let P be a program, Q be a goal ?-L1,…,Ln, ρ' Rρ be a practical computation
rule and Selρ'(Q) =j, 1 j n, n > 0. If Lj is a condition and Subρ'(Q) is undefined
or Lj is a negative literal, which is not ground, then ρ' rejects the goal Q.
If SLDNF-tree for (P,Q) via ' is finite, contains no branches ending in the
empty goal and contains at least one derivation of rejected goal, then the
goal Q is rejected by '.

An SLDNF-derivation of (P,Q), SLDNF-tree for (P,Q) and finitely failed
SLDNF-tree for (P,Q) via ' are defined in the same manner as for rules of
the set R. If there exists an SLDNF-derivation of (P,Q) via ' for the goal G,
we denote this by (P,Q)|ρ' G.

The set of all goals, which are rejected by ρ', we denote by
Reject(ρ'). Introduce a partial order in the set Rρ. Let ρ', ρ" Rρ. Then
ρ' < ρ", if Reject(ρ") Reject(ρ'). Rρ is a complete lattice, whose greatest
element is the rule and, whose least element is the rule that rejects all
goals, for which Subρ(Q) is defined.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 3, p. 40–46.

46

The set of answers to a nonempty goal Q to a program P correspon-
ding to the procedural semantics based on a practical computation rule ' R
is defined in the same manner as for rules of the set R. We denote this set by
Proc'(P,Q).

It is easy to see that the following theorem holds.
T h eo r e m 3 . Let P be a program, Q be a nonempty goal, ρ R and

ρ', ρ" Rρ. Then
а) ρ' < ρ" Procρ'(P,Q) Procρ''(P,Q),
b) Procρ'(P,Q) Procρ(P,Q).
T h eo r e m 4 . Let P be a program, Q be a nonempty goal, ρ R and

ρ' Rρ. Then Procρ'(P,Q) Log(P,Q).
The proof follows from the Theorem 3 and the corollary to Theorems 1

and 2.

Received 15.07.2011

R E F E R E N C E S

1. Nigiyan S.A. Horn Programming with Built-in Predicates. Programming and Computer Software,

1996, v. 22, № 1, p. 19–25.
2. Lloyd J.W. Foundations of Logic Programming. Berlin: Springer–Verlag, 1984.

