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Introduction. The foundations of Horn programming and SLD-resolution 

with built-in predicates are investigated in [1]. Logic programs described in [1] 
lack sufficient expressiveness for many situations. The problem is that often a 
negative literal is needed in the body of program clause. It is important to extend 
the definition of programs to include negative literals in the clause bodies. Logic 
programming systems also require a mechanism for handling negative subgoals. 
The method usually chosen is SLDNF-resolution, which is the augment of SLD-
resolution with the negation as failure rule [2]. In [2] SLDNF-resolution is 
investigated in pure logic programming. However, real logic programming systems 
use both negation and built-in predicates. In this paper the SLDNF-resolution in 
logic programming with negation and with built-in predicates is introduced. In 
order to justify the use of negation as failure rule the completion of program is 
modified. The soundness of SLDNF-resolution is shown for this case. SLDNF-
resolution rules used in real systems, i.e. practical SLDNF-resolution, is considered 
and  the soundness of  practical SLDNF-resolution is proved. 

Notation and Background. Consider three nonintersecting sets  ,    and 
X.  is a set of functional symbols each possessing an arity. For any n  0,  
contains  a  countable  number  of  symbols  of  arity  n.  X  is  a  countable  set  of  
variables. Terms are composed of elements of sets   and  X.  By  Var(t)  we 
denote the set of all variables involving in the term t. The set of all terms with no 
variables is denoted  by  M.  

We assume also that 12, where 1 is the set of predicate symbols,  
2  is the set of built-in predicate symbols, each k-ary (k > 0) built-in predicate is 
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being a calculable mapping Mk{true, false}. The atoms are defined as usual [2]. 
A formula of the first-order predicate logic with equality over logical operations      
, , , ,  and quantifiers  and  is defined conventionally [2]. A predicate 
term is an atom, which uses predicate symbol from 1. A literal is a predicate term 
or the negation of a predicate term. A ground literal is a literal with no variables.   
A condition is an atom or the negation of an atom, which uses predicate symbol 
from  2. 

A substitution σ is a set {t1/x1,…,tn/xn}, where ti is a term, xi is a variable, 
ti≠xi, i≠j  xi≠xj, i,j=1,…,n, n  0. The following denotations are introduced: 
Arg(σ) = {x1,…,xn}, Var(σ) = Var(t1)…Var(tn). The composition of substitu-
tions is defined traditionally [2]. 

Atoms (or terms) A1 and A2 are said to be unified, if there exists a 
substitution   such that A1 = A2. The substitution  is called the unifier of A1 and 
A2. A unifier  is called the most general unifier of A1 and A2 ( = mgu(A1, A2)), if 
for any  unifier     there exists a substitution    such that  = . 

In this work the set of Herbrand interpretations [1], denoted by H, are 
considered. 

The value of a closed formula F on the interpretation I is defined in the 
natural way and denoted by ValI(F). The formula F is termed identically true, if            
F  takes  the  value  true  on  any  interpretation  from  H.  If  F  and  F '  are  closed 
formulae  and  the  formula  F  F '  is  identically  true, we  will  say  that  F '  is  a 
logical  consequence  of  F  and  denote  this  fact  by  F|F '.  

A general logic program (or simply program) P is a sequence S1,…,Sn of 
clauses, n > 0. A clause S{S1,…,Sn} has the form A:-K1,…,Km, where A is a 
predicate term, each K{K1,…,Km} is a literal or a condition, m  0. Atom A is 
called  the  head  of  the  clause  S, the sequence K1,…,Km  is  called  the body of  S.  
If  m = 0,  S  is  termed  a  fact,  else  S  is  termed  a  rule. With  the  program  P  
we associate  the  formula  comp(P): 

F(p1)& … & F(pu), 
where  p1,…,pu  are  the  predicate  symbols  from  program  P, pi  1, i = 1,…,u,  
u  1,  and  every  F(p),  where p  {p1,…,pu},  is  defined  in  the  following  way: 

If  p  is  a  0-ary  predicate  symbol  and  p  is  a  fact  of  program  P,  then 
F(p) is  p, else  if   p  does  not  appear  in  the  head  of  any  clause  of  P,  then 
F(p) is  p,  else  if  the  definition  of  p  is  p:-B1,…,p:-Bv,  where  Bi  is  the  body 
of the clause p:-Bi, i=1,…,v, v  1, then F(p) is pE1…Ev, where Ei is 
y1…yd(K1& … &Km),  y1,…,yd (d  0)  are  the  variables  of  the  rule  p:-Bi,  and 
Bi  is  K1,…,Km,  m  1,  i = 1,…,v. 

If  p  is  an  n-ary (n > 0)  predicate  symbol  and  p  does  not  appear  in  the 
head of any P program clause, then F(p) is x1…xnp(x1,…,xn), else if the 
definition  of  p is  A1:-B1,…,Av:-Bv,  where  Bi  is  the  body  of  the  clause  Ai:-Bi,            
i = 1,…,v,  v  1,  then F(p) is x1…xn(p(x1,…,xn)  E1…Ev), where x1,…,xn 
are  variables  not  appearing  in  the  clauses  A1:-B1,…, Av:-Bv,  each  Ei  has  a  
form  y1…yd(K1&…&Km), y1,…,yd (d  0)  are  the  variables  of  the  rule  Ai:-Bi, 
and  Bi  is  K1,…,Km,  m  0,   i = 1,…,v. 

A  general  goal  (or  simply  goal) Q has  the form ?-L1,…,Ln, where  Li  is  a 
literal or a condition, i = 1,…,n,  n  0; number n is called the length of the goal Q. 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2011, № 3, p. 40–46.  
  
42 

The goal Q is identified with the formula y1…ys(L1&…&Ln), where y1,…,ys are 
the variables involved in the L1,…,Ln, n  1, s  0. We denote the set {y1,…,ys}  by  
Var(Q).  If  n = 0,  Q  is  called  an  empty  goal. 

Let us describe the set of answers to a nonempty goal Q to a program P in 
accordance with logical semantics and denote it by Log(P,Q). 

If  comp(P)| ≠  Q  and  comp(P)| ≠  Q,  then  Log(P,Q) = ; 
if  comp(P)| =  Q,  then  Log(P,Q) = {no}; 
if  comp(P)| =  Q  and  Var(Q) = ,  then  Log(P,Q) = {yes}; 
if  comp(P)| =  Q  and  Var(Q) = {y1,…,yr},  r>0,  then  Log(P,Q)  consists  

of all  such  collections  of  terms  <t1,…,tr>  Mr,  for  which  P|= Q,  where           
  = {t1/y1, … ,tr/yr}. 

SLDNF-Resolution in Logic Programming with Negation for Built-in 
Predicates.  Procedural  Semantics.  Now  we  describe  the  set  of  SLDNF-
resolution rules (computation rules). Each computation rule  is defined via 
functions Sel   and  Sub.  Let  Q  be  a  goal  ?-L1,…,Ln,  n  1,  Sel(Q){1,…,n}.  
Let  Sel(Q) = j (1≤ j ≤ n).  If  Lj  is  a  literal,  then  Sub(Q)  is  undefined.  Let  Lj 
be a condition. So, Sub(Q) is a set of substitutions and for any σ  Sub(Q)            
the  following   conditions  are  satisfied: 

1. Arg(σ)  Var(Lj), 
2. Var(σ)  (Var(Q)\Var(Lj )) = , 
3. Val(Ljσγ) = true for any substitution γ such that Var(Ljσγ) = , and                  

for any substitution , where Var(Lj) =  and Val(Lj) = true, there exists                  
σ  Sub(Q)  and  γ,  so  that  Lj  = Ljσγ. 

We specify the class of safe computation rules and denote it by R. A 
computation  rule    is  safe, if  having  selected  a  ground  negative  literal  A in  
some  goal,    attempts  to  finish  the  construction  of  a  finitely  failed SLDNF-
tree  with  root ?-A  before  continuing  with  the  remainder  of  the  computation. 
If    selects  a  nonground  negative  literal,  then     rejects  the  goal. 

Let P be a program, Q be a nonempty goal and   R. Then the SLDNF-tree 
for  (P,Q)  via    is  defined  as  follows: 

1. Each node of the tree is a goal. 
2. The root node is Q. 
Let ?-L1,…,Ln (n1) be a node of the tree  and Sel(?-L1,…,Ln) = j (1 ≤ j ≤ n). 
3. Let  Lj  be  a  positive  literal,  then  this  node  has  a  descendant  for 

each clause A:-K1,…,Km (m  0) from program P, such that Lj and A are unifiable. 
The  descendant  is  ?-L1σ,…,Lj-1σ,K1σ,…,Kmσ,Lj+1σ,…,Lnσ,  where  σ = mgu(Lj,A). 

4. Let Lj be a ground negative literal. If the subgoal Lj is successful,            
the  single  descendant  of  the  node  is ?-L1,…,Lj-1,Lj+1,…,Ln.  If  the  subgoal  Lj 
fails,  the  node  has  no  descendants. 

5. Let Lj be a condition. If Sub(Qi) ≠ , then this node has a descendant for 
each   Sub(Qi). The descendant is ?-L1,…,Lj-1,Lj+1,…,Ln. If Sub(Qi) = ,  
then this node has no descendants. 

6. Nodes which are the empty goal have no descendants. 
Let P be a program, Q be a nonempty goal and R. If SLDNF-tree for 

(P,Q) via  is finite, contains no branches, which end in the empty goal, and 
contains  at  least  one  derivation  of  rejected  goal,  then  the  goal  Q  is  also 
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rejected  by  .  A  finitely  failed  SLDNF-tree  for  (P,Q)  via    is  one  which  is 
finite,  contains  no  branches,  which  end  in  the  empty  goal  and  contains  no 
rejected  nodes. 

Let P be a program, Q be a nonempty goal and   R. An SLDNF-derivation 
Q1,Q2,… of  (P,Q) via ,  where  Q1 = Q is defined as follows:  

Suppose  Qi  (i > 0)  is  ?-L1,…,Ln (n  1) and Sel(?-L1,…,Ln) = j (1 ≤ j ≤ n). 
If  Lj  is  a  positive  literal,  A:-K1,…,Km (m  0)  is  a  clause  from  P  and   

σ = mgu(Lj, A), then the derived goal Qi+1 is ?-L1σ,…,Lj-1σ,K1σ,…,Kmσ,Lj+1σ,…,Lnσ.  
If Lj is a ground negative literal A, an attempt is made to construct an 

SLDNF-tree with ?-A at the root. If the goal ?-A succeeds, the subgoal A fails and 
so the goal Qi also fails. If A fails finitely, the subgoal A succeeds and the derived 
goal  Qi+1 is ?-L1,…,Lj-1, Lj+1,…,Ln. 

If  Lj  is a condition, Sub(Qi) ≠ ,   Sub(Qi),  then  the  derived  goal 
Qi+1 is  ?-L1,…,Lj–1,Lj+1,…,Ln. 

Now  we  describe  the  set  of  answers  to  a  nonempty  goal  Q  to  a 
program  P corresponding  to  the  procedural  semantics  based  on  a  computation 
rule    R  and  denote  this  set  by  Proc(P,Q). 

If  the  goal  Q  is  rejected  by  the  rule  ,  then  Procρ(P,Q) = ; 
if  (P,Q)  has  a  finitely  failed  SLDNF-tree  for  (P,Q)  via  ,  then 

Procρ(P,Q) = {no}; 
if  (P,Q)| ρ?-  and  Var(Q) = ,  then  Procρ(P,Q) = {yes}; 
if (P,Q)| ρ?- and Var(Q) = {y1,…,yr}, r > 0, then Procρ(P,Q) consists of           

all such collections of terms <t1, … ,tr>  M r that there exist an SLDNF-derivation 
of (P,Q) via , which end in the empty goal and such substitution  that                  
{t1/y1,…,tr/yr}  σ1…σk–1, where σi is the substitution corresponding to the 
application  of  the  rule  ρ  that  results  the  goal  Qi+1, i = 1,…,k–1,  k > 1. 

Soundness  of SLDNF-Resolution. Let us state three Lemmas omitting 
their proofs. 

L e m ma  1 .  Let P be a program, Q be a nonempty goal ?-L1,...,Ln,   R, 
Selρ(Q) = i  (1  i  n)  and  Li  be  a  predicate  term  or  a  condition. If there are no  
derived  goals  of  (P,Q)  via  one  application  of  the  rule  ,  then  comp(P)|=Q. 

L e m ma  2 .  Let P be a program, Q be a nonempty goal ?-L1,...,Ln,   R, 
Selρ(Q) = i  (1  i  n),  Li  be  a  predicate  term  and  {Q1,...,Qr} (r > 0)  be  the  set 
of all derived goals of (P,Q) via one application of the rule , Q j ≠ ?- (1  j  r). 
Then  comp(P)| =  Q  Q1... Qr. 

L e m ma  3 .  Let P be a program, Q be a nonempty goal ?-L1,...,Ln,   R, 
Selρ(Q) = i  (1  i  n), Li be a condition and D is the nonempty set of nonempty 
derived goals of (P,Q) via one  application of the rule . Then for any  
interpretation  I 

ValI(Q) = true     there  exists  Q'  D  such  that  ValI(Q') = true. 
T h eo r e m 1 .  Let P be a program, Q be a nonempty goal and   R. Then, 

if  (P,Q)  has  a  finitely  failed  SLDNF-tree  via  ,  then  comp(P) | = Q. 
Proof. We use the mathematical induction on the number m of negative 

subgoals selected during the construction of the finitely failed SLDNF-tree 
(including construction of subsidiary trees). Suppose first that m = 0. Then the             
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result follows by a straightforward induction on the depth of the tree, using 
Lemmas 1, 2 and 3. 

Assume the hypothesis holds for k < m (m > 0). Consider a finitely failed 
SLDNF-tree  for (P,Q),  construction  of  which  requires  the  selection  of  m 
negative literals. There is at least one goal, selected literal of which is negative, 
appearing on the main tree. Consider a goal G of the least depth h in this tree, 
selected  literal  of  which  is  negative. Let  G  be ?-L1,...,Ln,  Selρ(G) = i (1  i   n, 
n > 0)  and  Li  is  A,  where  A  is  ground  predicate  term.  There  are  two  cases 
to  consider. 

a) Goal  ?-A  fails. 
Thus, subgoal A is deleted from G. The derived goal G' has the form          

?-L1,...,Li-1,Li+1,…,Ln. By the induction hypothesis, comp(P)| = G'. G' has the 
following form: (L1...Li–1Li+1...Ln) (L1…Li–1Li+1…Ln), 
consequently comp(P)| = (L1…Li–1(А)Li+1…Ln). It is obvious, 
that the formula (L1…Li–1(А)Li+1…Ln) is G, therefore, 
comp(P)| = G. 

b) (P,?-A) has an SLDNF-derivation, which ends in the empty goal.  
If for certain nonempty goal Q', we have (P,Q')|ρ?- and the number of 

negative subgoals selected during the derivation is less than m, then by                
induction on the derivation length and using induction hypothesis, Lemmas 2, 3, 
we obtain that comp(P)| = Q', therefore, comp(P)| = A. Since G' is the formula 
(L1…Li-1АLi+1…Ln) and comp(P)| = А, then it is evident that 
comp(P)| = (L1…Li-1АLi+1…Ln),  i.e.  comp(P)| = G'. 

Let  {Q1,…,Qr}  be  the  set  of  all  goals  of  depth  h, r > 0. We  have 
comp(P)| = Qi  for  any i = 1,…,r. Using  the  fact,  that    selects  no  negative  
literals to the depth h and Lemmas 1, 2, 3, we obtain that comp(P)| =                            
= Q  Q1…Qr.  Consequently,  comp(P)| = Q.                                                  � 

T h eo r e m 2 . Let P be a program, Q be a goal ?-L1,…,Ln (n  1) and               
  R. Then, if (P,Q) has an SLDNF-derivation, which ends in the empty goal, 
σ1,…,σs (s > 0) is the sequence of substitutions using in this derivation, then 
comp(P)| = y1…ym((L1…Ln)σ1…σs), where y1,…,ym (m≥0) are the variables 
appearing  in  (L1…Ln)σ1…σs. 

Proof.  We prove by induction on the length s of SLDNF-derivation.  
Suppose  first  that  s = 2.  This  means  that  Q  has  the  form ?-L1.  We 

consider  3  cases. 
a) L1  is  a  predicate  term.  Thus,  P  has  a  fact  A  and  L1σ1 = Aσ1,  where 

σ1 = mgu(L1,A).  Since  comp(P)| = (Aσ1),  then  comp(P)| = (L1σ1). 
b) L1  is  a  ground  negative  literal  of  the  form  A,  and  (P, A)  has  a  

finitely  failed  SLDNF-tree  via  .  Theorem  1  shows  that comp(P)| = A, i.e. 
comp(P)| = L1  and  σ1  is  an  empty  substitution.  

c) L1 is a condition. Then Subρ(Q) ≠  and σ1  Subρ(Q). It follows from 
definition of the set Subρ(Q), that ValI((L1σ1)) = true for any substitution I and 
comp(P)| =  (L1σ1)  can  be  argued. 

Next suppose that s > 2. Assume the hypothesis holds for derivations with 
the  length  less  than  s. Consider  the  SLDNF-derivation  Q1,Q2,…,Qs,  where          
Q1 = Q, Qs = ?-,  σ1,σ2,…,σs–1  is  the  sequence  of  mgu's  used  in  this  derivation, 
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Q  has  the  form ?- L1,…,Ln,  where  n > 0.  Let  Sel(Q) = i, i  {1,..,n}.  We 
consider  three  possible  cases.   

a) Li  is a predicate term. Then P has a clause of the form A:- K1,…,Km            
(m  0), such that Li and A are unifiable and σ1 = mgu(Li,A). The goal Q2                        
is ?-L1σ1,…,Li–1σ1,K1σ1,…,Kmσ1,Li+1σ1,…,Lnσ1. By the induction hypothesis 
comp(P)| = ((L1σ1…Li-1σ1K1σ1…Kmσ1Li+1σ1…Lnσ1)σ2…σs-1). Thus, 
if  m > 0, comp(P)| = ((K1…Km)σ1σ2…σs–1). Consequently, comp(P)| =               
= (Aσ1σ2…σs–1) and comp(P)| = ((L1σ1…Li–1σ1Aσ1Li+1σ1…Lnσ1)σ2…σs–1), 
since Aσ1 = Liσ1, then comp(P)| = ((L1σ1…Li–1σ1Liσ1Li+1σ1…Lnσ1)σ2…σs-1), 
i.e.  comp(P)| = ((L1…Li-1LiLi+1…Ln)σ1σ2…σs-1). 

b) L1 is a ground negative literal. It follows from Theorem 1 that                
comp(P)| = Li and σ1 is an empty substitution. The goal Q2 is ?-L1,…,Li–1,Li+1,…,Ln. 
By the induction hypothesis comp(P)| = ((L1…Li–1Li+1…Ln)σ2…σs–1). 
Since σ1 is an empty substitution, comp(P)| = Li and Li contains no variables, then  
comp(P)| = ((L1…Ln)σ1…σs–1). 

c) L1 is a condition. Then Subρ(Q) ≠ . The goal Q2 is ?-L1σ1,…,Li-1σ1, 
Li+1σ1,…,Lnσ1,  where  σ1  Subρ(Q).  By  the  induction  hypothesis 

comp(P)| = ((L1σ1…Li–1σ1Li+1σ1…Lnσ1)σ2…σs-1),  i.e.  
comp(P)| = ((L1…Li–1Li+1…Ln)σ1…σs–1).  

It follows from definition of the set Subρ(Q) that ValI((Liσ1)) = true for any 
interpretation I and comp(P)| = (Liσ1). So we obtain that comp(P)| = (Liσ1…σs–1) 
and, consequently, comp(P)| = ((L1…Ln)σ1…σs–1).                                          � 

Corollary to Theorems 1 and 2. Let P be a program, Q be nonempty goal 
and  ρ  R. Then Procρ(P,Q)  Log(P,Q). 

Practical SLDNF-Resolution. In practice we use computation rules with 
definition domain less than the definition domain of rules of the set R. Let ρ  R. 
Define the set of practical computation rules Rρ. Each rule ρ'  Rρ, as well as the rule 
ρ, corresponds to two functions Selρ' and Subρ', such that Selρ' = Selρ, the definition 
domain of Subρ' is a subset of the definition domain of the function Subρ, and if 
Subρ'(Q)  is  defined  for  nonempty  goal  Q,  then  Subρ'(Q) = Subρ(Q). 

Let P be a program, Q be a goal ?-L1,…,Ln, ρ'  Rρ be a practical computation 
rule and Selρ'(Q) =j,  1  j  n,  n > 0. If Lj is a condition and Subρ'(Q) is undefined 
or  Lj  is  a  negative  literal,  which  is  not  ground,  then  ρ'  rejects  the  goal  Q.  
If  SLDNF-tree  for  (P,Q)  via  '  is  finite,  contains  no  branches  ending  in  the 
empty  goal  and  contains  at  least  one  derivation  of  rejected  goal,  then  the 
goal  Q  is  rejected  by  '. 

An SLDNF-derivation of (P,Q), SLDNF-tree for (P,Q) and finitely failed 
SLDNF-tree  for  (P,Q)  via  '  are  defined  in  the  same  manner  as  for  rules  of 
the set  R. If  there  exists  an  SLDNF-derivation  of  (P,Q) via  '  for  the  goal  G,  
we  denote  this  by  (P,Q)|ρ' G. 

The  set  of  all  goals,  which  are  rejected  by  ρ',  we  denote  by  
Reject(ρ').  Introduce  a  partial  order  in  the  set  Rρ.  Let  ρ', ρ"  Rρ.  Then                  
ρ' < ρ",  if  Reject(ρ")  Reject(ρ').  Rρ  is  a  complete  lattice,  whose  greatest 
element  is  the  rule    and,  whose  least  element  is  the  rule  that  rejects  all  
goals,  for  which Subρ(Q)  is  defined. 
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The  set  of  answers  to  a  nonempty  goal  Q  to  a  program  P  correspon-
ding  to the procedural semantics  based  on  a  practical  computation  rule '  R 
is defined in the same manner as for rules of the set R. We denote this set by 
Proc'(P,Q). 

It is easy to see that the following theorem holds.  
T h eo r e m 3 .  Let  P  be  a  program,  Q  be  a  nonempty  goal, ρ  R  and 

ρ', ρ"  Rρ.  Then 
а)  ρ' < ρ"  Procρ'(P,Q)  Procρ''(P,Q), 
b)  Procρ'(P,Q)  Procρ(P,Q). 
T h eo r e m  4 . Let  P  be  a  program,  Q  be  a  nonempty  goal,  ρ  R  and 

ρ'  Rρ.  Then  Procρ'(P,Q)  Log(P,Q). 
The  proof   follows  from  the  Theorem  3  and   the  corollary  to  Theorems 1  

and  2. 
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