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The diffraction of plane shear electro-elastic wave on a thin semi-infinite 
( , ), ( , )x y w x y  metallic layer piezoelectric-vacuum space is considered in the 

presence of a thin infinite (ground shield) metallic layer in vacuum. The problem 
is reduced to the solution of a functional equation in the theory of analytical 
functions. The problem admits closed solution describing the wave fields in 
vacuum and in the piezoelectric medium. The presence of the semi-infinite 
metallic layer leads to a diffraction of a waves, a result of which surface electro-
elastic waves occur. 
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In the present paper 6 mm class piezoelectric medium of hexagonal symmet-

ry is considered that occupies 0y   semi-space in the Cartesian coordinate system, 
0y   semi-space being in vacuum 

and 0y  , 0x   semiplane being 
metalized with grounded thin layer. 
The layer is so thin that its stiffness is 
not taken to account, i.e. the layer is 
considered to be an electrode on the 
mentioned semiplane. OZ axis is 
coincident with the piezocrystal. 

As y h   plane is screened, 

its electric potential (1) 0  . 
A plane shear electro-elastic wave is incident from infinity on the electrode 

at 0  angle, where 00 / 2    (Fig.). The components of electric and 
displacement potential amplitudes of the incident wave are as follows: 
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where /k c  is the wave number, 44 1 ) /(c c     is the velocity of  propaga- 
ting shear electro-elastic wave,   is the frequency of vibrations and   is the 

medium density, 1 44
2
15 1/e c   is the electromechanical coupling coefficient of the 

piezoelectric medium and 15 11 44, ,  e c  are the piezoelectric, dielectric and elastic 
constants respectively.  

Here it was taken into account that the dependence of the electro-elastic field 
on the time parameter is harmonic:  ,i te   where t is the time parameter. 

Subject to a condition that the piezoelectric medium is in an anti-plane 
deformation state, we aimed at determination of wave fields in the piezoelectric 
medium and vacuum. Having in view the determination of amplitudes of 
displacement and electric potentials, we shall avail of the following equations [1]: 
                                     2 2

15 110,w k w k e w                                       (2) 
and for vacuum: 
                                (1) 0,    0y  ,                                                     (3) 

where  2 2 .x y           
Now write out the boundary conditions of the problem under assumption of 

the absence of stress at the interface between piezoelectric medium and vacuum: 
                   54 14 0,yz c w y ye          0.y                                  (4) 

The conditions for electric potential and 2D  component of induction vector are: 

                                 (1)0, 0, 0,y x                                                           (5) 

                                 (1)
00, 0, ( ),y x           x                                        (6) 

                                 (1) 0,,y h                                                                    (7) 

                                 (1)
22 00, 0, ( ),y x         DD D x                                       (8) 

                                 (1)
2 20, 0,           ,y x D D                                                   (9) 

where   (1)
2 0 2 15 11, ,      ( ) ( ),D x y D x y ey w y y         . 

Hence, in the problem under consideration vacuum appears a vacuum layer 
of  h width. Here 0 0, ( ) ( )x D x  are the required functions, for which the following 
functions are applicable: 

0 0( )( ) ( ) (( ( ).)),x x xx x xD         
In that case from (5), (6), (8), (9) we obtain: 

(1) ( ),x          (1)
2 2 ( )DD x   , 

where ( )x is the Heaviside function. 
Then introducing the following functions 

( , ) ( , ) ( , ), ( , )  ( , ) ( , ),u x y w x y w x y x y x y x y        
we have for stress and induction components: 
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To determine the functions ( , ), ( , )u x y w x y , we have from equation (2) that must 
also satisfy the outgoing wave condition 
                   2 2

15 110, 00,u k u k e u y        .                    (10) 
Applying the generalized integral Fourier transform [2], we obtain 
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2 2 2 2 15
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  
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2 (1)

2 (1)
2 0, 0,d y

dy
                              (12) 

where ( , ) ( , ) , ( , ) ( , ) ,i x i xu y u x y e dx    y x y e dx    
 

 

    and the boundary 

conditions will be 

                44 15 44 0 0( )2 1 sin ( cos ) 0, 0,du dc e ikc k     y
dy dy


                   (13) 

              115
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

                  (14) 

                        1
15 11 00,        / / / ( )y e du dy d dy d dy         ,              (15) 

                                    1,            0.y h                                                (16) 
Here 0  is an electric constant of semi-space 0y   and ( )x  is the Dirac delta-

function. We also considered that 2 ( ).i xe dx  




  

To satisfy the condition of the outgoing wave, we assume that 
2 2( ) | |k       when | |   and 2 2 2 2 ,k i k      i.e. in the 

complex plane i     the real axis bypasses the branching points –k  from top 
and k from bottom [3].  

Whereas , 0u   when ,y   the solutions of equations (11) and (12), 
will have the form 
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From conditions (14)–(16) we obtain:  
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From condition (13) we derive the following functional equation for 
unknown functions ( )   and  ( ) :   

                    1 0( ) ( )(1/ | |) ( ) 2 ( cos ) 0,K k                              (18) 

where  15 0
1 11 0
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and 1,2 ( ) 1K    when | | .   
It is shown that 1( )K   function has a zero when 1,   where 1  is the 

only root of equation 1( ) 0K    when ,k   and 2 ( )K   function has a zero when 

2 ,   where 2  is the only root of equation 2 ( ) 0K    when 2 1,k     so 
,( ) 0iK k   ,( ) 0iK    ( ) 0iK    when ( 1, 2),k i    2 ( ) 0K   .   

The functional equation can be considered as the Riemann boundary 
problem in the theory of analytical functions. 

The real axis bypasses also points 1,   2   from the top and 

1,    2     from the bottom, ensuring the observance of the conditions of  
outgoing wave. So, as the dispersion equations 0 ( 1 )) 2( ,iK i    have roots  

,i  the localized (surface) waves propagate in the piezoelectric medium. 
Let us find the solution of functional equation (18) by means of factorization 

method, representing K () and ||  in the following form [2]: 
  1 1/ 2/ 2( ) ( ) ( ), | | ( 0) 0( )K K K i i          ,                   (19) 

where ( )K   are regular functions that have no zeros in the upper and lower semi-
spaces Im 0   and Im 0   of the complex plane, where i    . Note, that 

( ) 1K    are in their regularity domains when | |  . Then equation (18) is 
presented in the following form: 

1/ 21/ 2
01

01/ 2
0

( cos 0)( 0) 1 2  ( cos ) 0.( ) ( ) ( )
( ) ( )( 0) cos

k ii K k
K i K k

 
        
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 
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equation (18) will be written in the following form when     : 
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As this equation is solved by means of the same method as that in [2, 4],  
therefore, the equality ( ) ( )J J    holds, only if  ( ) ( ) 0.J J     

Thus, we obtain for the unknown functions: 
1/ 2

0
1/ 2

01 0

( cos 0) 1
cos 0cos ( 0)

( )( )
( )

k i K
k ii K k i

  
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   







  

  
, 

1/ 2 1/ 2
0

00

( cos 0) 1 ( 0)
cos 0co

( )
( ) ( )s

k i i
k iiK k K

  
 

  


 

 
  

 
. 

Hence, the problem of binding the expressions for amplitudes of displace-
ment and electric field will have solutions in the following form:  

                               

(1) (1)

1( , ) ( , ) ( , ) ,
2

1( , ) ( , ) ( , ) ,
2

1, ( ,( ) ) .
2
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w x y w x y u y e d

x y x y y e d

x y y e d


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

 


    


   



















 
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







                          (20) 

The wave field in the piezoelectric medium is presented by the diffracted, 
incident, reflected and localized (surface) waves.  
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