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Introduction. The present paper studies the normal automorphisms of n-periodic
products of finite cyclic groups. The operations of n-periodic products were con-
structed in the paper [1] for any odd number n ≥ 665. They posses many properties
of the classical operations of free and direct products of groups, including exactness,
associativity and hereditary property for subgroups (see [2]). The papers [3–5] are
devoted to the study of some other properties of n-periodic products of groups. First
we give some definitions. Suppose G is an arbitrary group and N =N (G) is the set
of all normal subgroups of G. Consider the set

AutN (G)
 {ϕ ∈ Aut(G)|ϕ(H) = H for all H ∈N }.
Each automorphism from AutN (G) is called normal automorphism. It is easy to see
that Inn(G) E AutN (G) ≤ Aut(G), where Inn(G) is the group of all inner automor-
phisms of G. It is clear that if ϕ is a normal automorphism of group G, then it induces
some automorphism of quotient group G/N.

A. Lyubotzky [6] proved that every normal automorphism of a free product of
infinite cyclic groups is inner, i.e. the equality Inn(F) = AutN (F) is true, where

F = Z∗Z∗ · · · ∗Z.
The equality Inn(G) = AutN (G) was proved by different authors for various

groups G (see [7–13]. For example, Minasyan and Osin in [12] proved, that if G is
a non-cyclic relatively hyperbolic group without non-trivial finite normal subgroups,
then Inn(G) =AutN (G). In the paper [13] it is proved that all normal automorphisms
of free Burnside group B(m,n) of rank m > 1 and odd period n≥ 1003 are

∗E-mail: amirjan.gevorgian@googlemail.com



4 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012,�2, p. 3–9.

inner. Improving the result of [6], M.V. Neshchadim in [11] proved that any normal
automorphism of a free product of nontrivial groups is inner. Note that the analogous
statement is false in general for n-periodic products of groups. This was shown in [4].

The main result of this paper is the following theorem.
T h e o r e m 1 . Let F = ∏

i∈I

n〈ai〉 be an n-periodic product of cyclic groups 〈ai〉

of odd order r ≥ 1003, where r divides n. Then each normal automorphism φ of the
group F is inner automorphism.

Some Quotient Groups of F and Auxiliary Lemmas. In the proof of Theorem
1 we need some quotient groups of the group F . For simplicity we denote generators
a1 and a2 by a and b respectively. Suppose F(n,0) is a free group with generators
a1 = a, a2 = b, a3 .... For any natural β > 0 by F(n,β ) denote a group with the
same generators and system of defining relations {ar

i = 1, i ∈ I}, and {An = 1, where
A 6≡ ai for each i ∈ I and A ∈

⋃
i≤β

E i} (see [16, ch. VI, §2]. For α = 0 , 1 , 2 we denote

Γα 
 F(n,α). Suppose α > 2 and the groups Γδ are already defined for δ < α . Let
Ψα be the set of all elementary periods C of rank α−1, satisfying the relation

C
α−2
= A−dZ−1 B−dZ AdZ−1 BdZ , (1)

where A and B are minimized elementary periods of some ranks γ and β respectively,
Z ∈M α−2,γ 6 β 6 α−2,d = 191 (see [14, §1]). We choose the subset Ψα ⊂Ψα ,
so that each element C ∈Ψα is conjugate to exactly one word D in the group Γα−2,
satisfying D ∈Ψα or D−1 ∈Ψα . We denote by Φα the set of words for each period
C ∈Ψα and fixed elementary period A of rank γ ≤ α−2 from (1) containing exactly
two words

C200AC200A2 · · ·Ar−1C200xc, (2)

C300AC300A2 · · ·Ar−1C300yc, (3)

where the elements xc and yc are chosen so that one of them is equal to a and the
other one is equal to b. Obviously, for each C there are two possibilities (a,b) and
(b,a) for the choice of the pair (xc,yc). If a concrete pair is not mentioned, then we
will assume it is chosen arbitrarily. In the rest we will point out concrete values of
some pairs (xc,yc) (see the definition of K

′
).

We consider groups

Γα 


〈
a1,a2, . . . | ar

i = 1, Rn = 1, F = 1, R ∈
⋃

β≤α

Eβ , R 6≡ ai, i ∈ I, F ∈
⋃

β≤α

Φβ

〉
and

Γ


〈
a1,a2, . . . | ar

i = 1, Rn = 1, F = 1, R ∈
⋃

β>0

Eβ , R 6≡ ai, i ∈ I, F ∈
⋃

β≥3

Φβ

〉
.

By K we denote the class of all groups Γ, which are obtained by the above de-
scribed method for different choices of the subset Ψα ⊂Ψα and elements xc,yc. The
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following lemmas can be proved exactly in the same way as the analogous statements
of papers [13–15].

L e m m a 1 . Each Γ ∈K is an infinite group, whose each two non-commuting
elements generate the whole group Γ.

L e m m a 2 (see Lemma 13, [13]). If Xδ F
=T XεT−1, then the subgroup 〈X ,T 〉F

is cyclic.
L e m m a 3 (see Lemma 3, [15]). If E is an elementary period of rank γ ,

Z1, Z2 ∈Mλ ∩Aλ+1 for some λ ≥ γ ,
[
Ed , Z−1 EdZ

]
6= 1 and the commutators[

Ed , Z−1 EdZ
]

and
[
Ed , Z ′−1 EdZ ′

]
are conjugate in F , then for some integers u

and v either Z ′−1E−dZ ′ = Eu Z−1 E−dZ Ev or Z ′E−dZ ′−1 = Eu Z−1 EdZ Ev in F .
L e m m a 4 (see Lemma 4, [15]). For 1≤ |k | ≤ (r−1)/2 each of the commu-

tators [
ak, b−9 ak b 9

]
≡ a−k b−9 a−k b9 ak b−9 ak b9

is minimized elementary period of rank 2.
To obtain the quotient groups that we will use later in the proof of Theorem 1 ,

we will add some extra conditions on the set Ψ3 of groups from the class K.
Obviously, a is a minimized elementary period of rank 1 and b9 ∈M1. According

to Lemma 4 and definition of the set Ψ3, we have
[
ad , b−9 ad b 9

]
∈ Ψ3. Denote by

K
′
the set of all groups Γ ∈K, for which the following conditions hold:

1. the set Ψ3 in the definition of the group Γ is chosen so that
[
ad , b−9 ad b 9

]
∈Ψ3;

2. for period C

[
ad , b−9 ad b 9

]
∈Ψ3 the elements xc and yc, appearing in (2), (3)

respectively, are chosen to be xc = b, yc = a;

3. for all the other periods C ∈ Ψα , C
α−2
6=
[
ad , b−9 ad b 9

]
the elements xc and yc,

appearing in (2) and (3) respectively, are chosen as xc = a, yc = b.
The following lemmas can be proved exactly the same way as the analogous

statements of paper [13].
L e m m a 5 (see Lemma 7, [13]). For every Γ ∈K

′
the relations[

ad , b−9 ad b 9
]200

a
[
ad , b−9 ad b 9

]200
a2 · · ·a(r−1) [a, b−9 ab 9]200

b = 1, (4)[
ad , b−9 ad b 9

]300
a
[
ad , b−9 ad b 9

]300
a2 · · ·a(r−1) [a, b−9 ab 9]300

a = 1 (5)

and
C200AC200A2 · · ·An−1C200a = 1, C300AC300A2 · · ·Ar−1C300b = 1

for each period C ∈Ψα and C
α−2
6=
[
ad , b−9 ad b 9

]
.

L e m m a 6 (see Lemma 11, [13]). Let a,b ∈ {ai}, i ∈ I, φ : ∏
i∈I

n〈ai〉→ ∏
i∈I

n〈ai〉

be a normal automorphism and let φ(Z) = b9. Then the commutator [ad , Z−1adZ] is
not a conjugate of [ad , b−9 ad b 9]−1 in the group ∏

i∈I

n〈ai〉.
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L e m m a 7 (see Lemma 8, [13]). If in the group Γ ∈K′ the relation[
ak, b−9 ak b 9

]s
at
[
ak, b−9 ak b 9

]s
a2t · · ·a(r−1)t

[
ak, b−9 ak b 9

]s
at = 1

holds, where 1≤ |k | , | t | ≤ (r−1)/2, k≡ d · t(mod r) and q+2≤ s≤ (r−1)/2−2,
then k =±d and t =±1.

Properties of Normal Automorphisms of F .
L e m m a 8. Let F = ∏

i∈I

n〈ai〉 be a n-periodic product of cyclic groups 〈ai〉 of

odd order r ≥ 1003, where r divides n. If φ is a normal automorphism of F , then
φ(ai) = uia

si
i u−1

i for some ui ∈ F , and some si satisfying (si,r) = 1, i ∈ I.
Proof. The operations of n-periodic product for odd n≥ 665 are exact. Therefore,

the elements ai, i∈ I, have order r in F . Hence, their automorphic images φ(ai), i∈ I,
are also of order r.

Since φ is normal automorphism, then we have the equalities

Nai = φ(Nai) = Nφ(ai) = Nua ju−1 = Na j ,

where Nx stands for the normal closure of element x. In the light of the obvious
relation ai ∈ Nai we get ai ∈ Na j . The sum of degrees of the letter ai in any word from
the normal closure Na j is equal to 0 modulo r. Indeed, any defining relation of group
the F has the form either ar

i or An, where A ∈ F is an elementary period of some
rank. Thus, the sum of degrees of occurrences of the letter ai in each word from the
normal closure Na j has the form ur+ vn, which is a multiple of r by the hypothesis
of Lemma.

Assuming that j 6= i, we obtain that ai is equal to some element from the normal
closure Na j , the sum of degrees of the letter ai in which is equal to 0 modulo r. Thus,
we get an obvious contradiction. So, we can conclude that j = i. Consequently, we
have proved that φ(ai) = uas

i u
−1 for some integer s. Applying the automorphism φ−1

to both sides of this equality, we get ai
ss1 = ai for some integer s1. This implies that

ss1 ≡ 1(mod r).
The Lemma is proved.
L e m m a 9 . Let a,b ∈ {ai}, i ∈ I, φ : F → F be a normal automorphism

and let φ(a) = at , φ(b) = ubtu−1. Fix an element Z such that φ(Z) = b9. Then the
commutators [ad , Z−1adZ] and [ad , b−9 ad b 9] are conjugate in the group ∏

i∈I

n〈ai〉.

Proof. We will prove the Lemma by contradiction. Assume that the commu-
tators [ad , Z−1adZ] and [ad , b−9 ad b 9] are not conjugate in the group F = ∏

i∈I

n〈ai〉.

Since φ(Z) = b9, we obtain φ(
[
ad , Z−1adZ

]
) =

[
ad , b−9 ad b 9

]
in ∏

i∈I

n〈ai〉. Then,

according to [16, ch. VI, §2, i. 4] and [16, ch. IV, §3, i. 12], one can assume that
Z ∈M α ∩Aα+1 for some α ≥ 1. Choose a reduced form G1 of the commutator
[ad , Z−1adZ] according to Lemma 3.2 of [14]. By the definition of reduced form

we have G1
0
=w[ad , Z−1adZ]w−1 for some w ≡ a j. By Lemma 7.2 of [14] G1 is an

elementary period of some rank δ ≥ 2 for each Γ ∈ K. Since, by assumption the
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commutators [ad , Z−1adZ] and [ad , b−9 ad b 9] are not conjugate in the group ∏
i∈I

n〈ai〉,

using Lemma 11 [13], we obtain that the elements [ad , Z−1adZ] and [ad , b−9 ad b 9]±1

are not conjugate in the group Γ1. Therefore, there exist groups from class K′ ⊂ K

such that G1 ∈Ψδ+1.

Let Γ+ be one of such groups. By Lemma 5, the relations (4), (5) and

G200
1 aG200

1 a2 · · ·a(r−1)G200
1 a = 1, (6)

G300
1 aG300

1 a2 · · ·a(r−1)G300
1 b = 1 (7)

hold in the group Γ+.

Since G1
0
=a j[ad , Z−1adZ]a− j, we get φ(G1)

∏
i∈I

n〈ai〉
= a j[ad , b−9adb9]a− j. From the

definition of the group Γ+, for some normal subgroup N of the group ∏
i∈I

n〈ai〉 we

have Γ+ = ∏
i∈I

n〈ai〉/N. Applying φ to both sides of the relation (6), we obtain

(a jt [ak,b−9akb9]a− jt)200at(a jt [ak,b−9akb9]a− jt)200 · ··

· · ·a(r−1)t(a jt [ak,b−9akb9]a− jt)200 at ∈ N.

Therefore,

[ak,b−9akb9]200at [ak,b−9akb9]200 · · ·a(r−1)t [ak,b−9akb9]200 at ∈ N,

that is

[ak,b−9akb9]200at [ak,b−9akb9]200a2t · · ·a(r−1)t [ak,b−9akb9]200 at Γ+

= 1.

From here, by Lemma 7 we obtain that k =±d and t =±1.
In the case t = 1 we have φ(a) = a and φ(G1) = a j[ad , b−9adb9]a− j in ∏

i∈I

n〈ai〉.

Applying φ to both sides of the relation (7), we obtain

(a j[ad ,b−9adb9]a− j)300a · · ·a(r−1)(a j[ad ,b−9adb9]a− j)300 u−1bu ∈ N.

Therefore,

[ad ,b−9adb9]300a[ad ,b−9adb9]300a2 · · ·a(r−1)[ad ,b−9adb9]300 a− ju−1bua j Γ+

= 1.

Using the last equality and (5), we immediately deduce that the equality

a = a− ju−1bua j holds in the group Γ+, that is a
Γ+

= u−1bu. Thus, φ(a)
Γ+

= φ(b) and
hence φ(a−1b) ∈ N. Since φ(N) = N, we obtain that a−1b ∈ N, which implies that
Γ+ is a finite cyclic group. This contradicts to infiniteness of Γ (see Lemma 2). The
case t =−1 can be disproved in a similar way, using the relations of the form (5).

Proposition 1. Suppose a,b ∈ {ai}, i ∈ I, φ : ∏
i∈I

n〈ai〉 → ∏
i∈I

n〈ai〉 is a normal

automorphism satisfying φ(a) = at , φ(b) = ubtu−1. Let us fix an element Z such
that φ(Z) = b9. If the commutators [ad , Z−1adZ] and [ad , b−9 ad b 9] are conjugate in
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the group ∏
i∈I

n〈ai〉, then for some integers p,s, l,r we have Z = apb9as, t = 1 and

u = blar.
Proof. Since the commutators [ad , Z−1adZ] and [ad , b−9 ad ,b 9] are conjugate, in

virtue of Lemma 3 , we obtain that for some integers r and s either

Z−1a−dZ
∏
i∈I

n〈ai〉
= ar b−9a−db9 as

or

Za−dZ−1
∏
i∈I

n〈ai〉
= ar b−9 adb9 as.

Consider each of these cases:
A. Let Za−dZ−1 = ar b−9 adb9 as in ∏

i∈I

n〈ai〉. Then asZa−dZ−1a−s = as+r b−9adb9.

If s+ r 6≡ 0(mod r), then the word as+r b−9 a−db9 is an elementary period of rank 2.
Thus, the elementary period as+r b9 a−db−9 of rank 2 is conjugate to some power of
a, which contradicts to Lemma 6.6 from [14]. If s+ r ≡ 0(modr), we obtain that
a−d and ad are conjugate, which contradicts Lemma 2. Therefore, the case A is
impossible.

B. Let Z−1a−dZ = ar b−9a−db9 as in ∏
i∈I

n〈ai〉. Repeating the reasoning of the

previous case, we get s+ r ≡ 0(mod r) and asZ−1a−dZa−s = b−9a−db9 in ∏
i∈I

n〈ai〉.

This means that the element b9asZ−1 belongs to the centralizer of the element a−d in
the group ∏

i∈I

n〈ai〉. Applying Theorem 5 of [1], we get Z = apb9as for some integer p.

Next we prove that u = blar. Applying φ to both sides of the equality Z = apb9as, we
obtain b9 = aptu−1b9tuast . Now applying the homomorphism α : F → F defined by
formulae α(a)= a, α(b)= 1 to both sides of the last equality, we get apt+st = 1. Since
(t,r) = 1, then p≡−s(mod r). Thus, apu−1 belongs to normalizer of the element b9,
which, according to Lemma 1, implies u = blap for some integer l. It remains to
show that t = 1. Note that from the equalities b9 = aptu−1b9tua−pt and u = blapt we
have b9 = b9t . Hence,

φ(
[
ad , b−9ad b9

]
)

B(m,n)
= a−pt

[
ak, b−9 ak b 9

]
apt

for some k ≡ d · t (mod r), (k, r) = 1 and 1≤ |k | ≤ (r−1)/2.
Suppose that Γ is one of the groups from class K′ and Γ = F/N. Applying

the normal automorphism φ to the left part of the relation (5) and conjugating the
obtained element by apt , we get[

ak, b−9 ak b 9
]300

at
[
ak, b−9 ak b 9

]300
a2t · · ·a(r−1)t

[
ak, b−9 a−k b 9

]300
, at ∈ N.

From here, by Lemma 7 , it follows that k =±d and t =±1. Comparing the equality
b9 = b9t with t =±1, we deduce that t = 1. The Lemma is proved.
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The Proof of Theorem 1. Let φ : ∏
i∈I

n〈ai〉 → ∏
i∈I

n〈ai〉 be a normal automorphism

and a,b ∈ {ai}, i ∈ I, are such elements that φ(a) = at , φ(b) = ubtu−1. Fix an ele-
ment Z with φ(Z) = b9. According to Lemma 6, the commutators [ad , Z−1adZ] and
[ad ,b−9 ad b 9] are not conjugate in the group ∏

i∈I

n〈ai〉.

Thus, according to Proposition 1 we get Z = apb9as, t = 1 and u = blak for some
integers p,s, l,k. This means that φ(a) = a and φ(b) = akba−k. Suppose a j is one
of the generators of the group F , different from a and b. Arguing as above, we can
state that φ(a j) = asa ja−s for some s ∈ Z. It remains to prove that k≡ s(mod r). Let
us multiply the automorphism φ with inner automorphism generated by the element
a−k. We obtain a new normal automorphism φ1, satisfying conditions φ1(a) = a,
φ(b) = b and φ1(a j) = as−ka jak−s . Applying the Proposition 1 to the pair b,a j,
we obtain that for some integer m the relation as−ka ja−(s−k) = bma jb−m holds in the
group F .Finally using this and Lemma 2, we obtain the equalities as−k = bm = al

j in
F for some integer l. But the latter is possible only if s− k ≡ m≡ l ≡ 0(mod r).

This completes the proof of Theorem 1.

Received 19.04.2012
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