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One of the problems in the theory of coding is the code building of a 

maximum volume for the proposed additive channel. In this paper we have found 
and consequently presented the upper and the lower bounds for the code volume, 
which corrects the errors of  the additive channel. 
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Introduction. We consider an additive communication channel introduced 
in [1], as some information transformer, which is the generalization of the classic 
binary channel with limited number of distortions 0→1, 1→0. Many notions and 
facts in the present paper originate from the classic coding theory and are the direct 
analogues of the well known results [1–6].  

The “noise” generated by the additive channel results to a word at the 
channel exit that is different from that at the channel entrance. This leads to 
necessity for introducing standard in the coding theory notions of corrective code, 
relay speed, decoding, etc.  

One of the problems of the coding theory is construction of a code of the 
maximum volume for the given channel. In the present work upper and lower 
bounds for the error correcting code volume were obtained for the additive 
channel. 

Codes in the Additive Channel. Let {0,1}B =  be the binary alphabet and 
B∗  be the set of all words of finite length over the alphabet B , and . It 
is convenient to consider in this paper the set 

{0,1}n nB =
nB  as an n-dimensional space over 

the field . {0,1}B =

If  A={y0,y1,…,ym} is a subset in nB , then the notion of an additive channel 
A is associated with A in the following way.  

Each vector nx B∈  is transformed in the channel A into one of the vectors of 
the following form: ,sy x y= ⊕  0, ,s m=  where ⊕  is the addition operation in the 
space nB  (addition modulo 2).  
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Definition 1. For any nx B∈  the set  

{ }1( ) : ( ),t tА x u y u A x y A−= ⊕ ∈ ∈  

is could the t-order neighbourhood of  x  with respect to  A. Here we assume that 
0 ( ) { }.A x x=  

As the cardinality of number of elements in the t-order neighbourhood does 
not depend on the vector  x,  we denote it by | ( ) |t t .A A x=  

Definition 2. We will say that the code 0 1{ , ,..., }NV v v v=  corrects errors of 

the additive channel 0 1{ , ,..., }mA y y y=  if 1 1( ) ( ) , .i jA v A v i j∩ =∅ ≠  
Equivalently, V corrects the errors of  A,  if 

                                       i s jv y v yr⊕ ≠ ⊕                                             (1) 

or, in the symmetric form,  .i j sv v y yr⊕ ≠ ⊕  
It is clear that the expressions above are symmetrical with respect to the pair 

(A, V ), therefore, the notions of “error” generation and “error” correction have the 
same nature.  

Statement 1. If the code V corrects the errors of the additive channel A, then 
the code A corrects errors of the additive channel V. 

Note that the following estimate is given in [4] for the cardinality of number 
of elements in the code V, correcting the errors of the additive channel 

0 1{ , ,..., }:mA y y y=  

2 1
2 2| |

n n

V
A A

≤ ≤ .  

The code V , for which the upper bound is attained, is called a perfect code 
correcting the errors of the additive channel  A. 

To describe the “interrelations” of the additive channel A and its error-
correcting code V , it is convenient to introduce the following binary predicate 

( ),X A V :  

( )
1, if  the code corrects errors of  the channel

,
0 otherwise

   V     A,
X A V

 .
⎧

= ⎨
⎩  

 The predicate ( , )X A V  has the following properties: 

 a) ( ) ( ), ,X A V X V A= . 
 This property immediately follows from the symmetry of the error- 

correcting condition (1). 
 b)  ( ) ( ), ,X A x V y X V A⊕ ⊕ =  for any , nx y B∈ . 

 c) ( ) ( ), ,X A V X TA TV= , where Т is any invertible linear transformation 

Т:  n nВ В→  [1]. 
The property c) shows that the channels А and ТА for any invertible linear 

transformation Т share the same properties in the sense of error-correcting, 
therefore, it is natural to consider such channels as the same. 
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One of the main problems for the given channel A is the determination of the 
upper and lower bounds of the error-correcting code ( )V A  of the maximum 
volume for the channel A. If the number of the elements of the channel  is fixed, 

then there are 

A
2n

A
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 different additive channels and, as usual, it is reasonable to 

consider the maximum and the minimum of the cardinalities of error-correcting 
codes:  

( ) max ( ) , ( ) min ( ) .k k
A kA k

D n V A D n V A
==

= =  

The meaning of these functions were considered in [1] for the group code 
class and is obvious enough and it hardly needs in additional comments.  

It is clear that there are as many additive channels as there are Boolean 
functions and, as the properties b) and c) show, some of them do not essentially 
differ from each other. Is not clear what the classification of such channels looks 
like, but the following definition correspond to the general point of view.  

Definition 3. The channels A  and C  are called equivalent, if any error-
correcting code for the additive channel  A corrects also errors of C  and vice 
versa. 

The equivalence makes possible to look for the additive channels with the 
“best” and  “worst” correcting properties for each 2nm < . 

Statement 2. The additive channels ( )A u⊕  and ( )A v⊕  are equivalent for 

any . , nu v B∈
Statement 3. If ( , ) 1X A V = , then | | 1A V∩ ≤ . 
It follows from the preceding statements that, without loss of generality, we 

can assume that:  
a) if { }A  is the class of additive channels equivalent to A , then it is 

sufficient to solve the problem for any representative of this class; 
b) the additive channel A  contains the zero vector, which can be interpreted 

as possibility of  errorless transfer of the signal through the channel.  
It follows from the equality ( ),X A V 1=  that ( ),X V A 1= , hence, analogical 

statement holds for the code V  too; i.e. it is sufficient to consider only codes 
containing the zero vector.   

Thus, it follows from ( ),X A V 1=  that the sets   and  V  can overlap only 

at zero, and we must look for the elements of the code V  in . 
Further we denote 

A

( ){ n \ } { 00...0 }B A ∪

( ) ( )0 000...0 , 00...0 .y A v= ∈ = ∈V  
The Code Volume Bound in the Additive Channel. Let { }0 1, ,..., mA y y y=   

and { }0 1, ,..., ry y y  be a basis in A. Let us consider any basis { }0 1, ,..., nz z z , in the 

space nB , where  ,i iz y= 1,i = r
n

, and let  f  be a linear invertible transformation 
: nf B B→ , defined as follows: 
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( ) ( )10 10 , 1,i n i
i i .f z e i n− −= = =  

We denote by ( )f C  the image of the set :  nС B⊆

( )( ) { ; }.f C f y y C= ∈  

Obviously, if ( ) ( )1 2... n f Aα α α ∈ , then 0iα =  for all 1,i r n= + . 
The following statements hold. 
L e m m a  1 .  The image ( )( )f V A  of the code ( )V A  is a maximum code 

for the channel ( )f A  and ( ) ( )( )V A V f A= . 

Proof. Since ( )( ) ( ) ( )( ), 1, , ( )Х A V A X f A f V A 1,= =  we have 

( )( ) ( )( ) ( ) .V f A f V A V A≥ =
 
On the other hand, from ( ) ( )( )( ), 1X f A V f A =   

we obtain:  ( )( ) ( )( )( ) ( )( )( )1 1 1, 1, 1X f fA f V f A f V f A− − − .= =  
Hence, ( )( )( )1f V f A−  is a error-correcting code for the channel A , that is   

( )( ) ( ) .V f A V A≤  
The Lemma is proved.  
We denote  for any  { }1 2( ) ;  ,n nС D ху В x С у D+× = ∈ ∈ ∈ 1 2, .n nC B D B⊆ ⊆

It is obvious that 1 2 1and .n n n nС D С D B B В +× = × × = 2   
Let 

{ } { }1 2
0 1 0 1, ,..., and 0 , ,..., ,n n

m mA y у у В А А y у у В += ⊆ = × = ⊆� �� � � 1 2n n  

where 2( 0 ), 0, .n
i iy y i m= =�  

L e m m a  2 .  If ( , ) 1Х A V =� �
  for some  , then    where 

. 

1nV B⊆� ( , ) 1,Х A V =
2 1n nV V B B += × ⊆� 2n

Proof. Assume that ( , ) 0Х A V = , which means that there are  and 
 such that  

,i jv v V∈
,l sy y A∈ ,i j l sv v y y⊕ = ⊕ ,i j≠  l s≠ . 

Let  
2 2

1 1 2 2( ), , and ( ), ,n n
i jv vu v V u B v uu  u V u B= ∈ ∈ = ∈ ∈� �� � � � .

2

 
Then 

1 2 1 2( ) ( ) (( )( )).i jv v vu uu v u u u⊕ = ⊕ = ⊕ ⊕� � � �
 

Hence, it follows from the definition of А that 1u u= . Consequently, v u , 
implying that 

≠� �
,l sv u y y⊕ = ⊕� � � �  which contradicts to ( , ) 1Х A V =� � .  

The Lemma is proved. 
Let 

{ } 2 1
0 1( ) , where ( ), , , 0, .n n n n

i i i i iNV A B v a b а B b B i Nv ,v ,...,v += ⊆ = ∈ ∈ 2 =  

Also let { } 1
10 1, ,..., ,n

Nv v v B∈� � �  { } 2
20 1, ,..., n

Nu u u B⊆� � �  are the maximum 

cardinality  subsets  from  { }10 , ,..., Na a a   and  { }10 ,..., Nb b b  respectively,  satisfying  
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the conditions:  where ,i jv v≠� � 1 2, (0, ), , , (0, )i ji j N u u i j N .∈ ≠ ∈� �  

We want to prove that { } 2
20 1, ,..., .n

Nu u u B=� � �  

If there is some element { }2
20 1\ ,...,n

Nu B u ,u u∈ � � � , then for any  

and for   the vector  

, 0,iv,v i N=
JJJJG

,

)1nd B∈ iv (du⊕   can be represented in the form ( , where  
  As the vector 

)ab
1 2, , (00...0).n na B b B b∈ ∈ ≠ ,s ty y s t⊕ ≠ , can be represented in 

the form  with  we deduce that 2( 0 )nc 1 ,nc B∈ ( , ) 1X A Q =  for the code 
( ) ( ) 1 2 ,n nQ V A U du B += ⊆  which contradicts to the fact that ( )V A  is a maximum 

code. Let us consider the set 
{ } ( ) ( ){ }1

10 1; , ,..., ;n
b NМ v B v v v v vb V A= ∈ ∈ ∈

 
for any vector  2 .nb B∈

Since  for any ( , ) 1bX A M =� , , , ,b su v M u v u v y y s tt∈ ≠ ⊕ = ⊕ ≠� � , then 

s tub vb y y⊕ = ⊕�  for  This contradicts to the fact that 2, nb b B∈� . ( )( ), 1X A V A = . 
It is obvious that: 

1. ,b bM M =∅�∩   

2

2. ( ),
n b

b B
M V A

∈
=∪  

3. ( ) .bM V A≤ �  

Consequently,  ( ) ( ) ( ) 2

2 2 2

2 .
n n n

n
b b

b B b B b B
V A M M V A V A

∈ ∈ ∈

= = ≤ =∑ ∑ �∪
 

From this mequality and Lemma 2 we obtain that ( ) 2( ) 2 ,nV A V A= �  that is: 

L e m m a  3 .  For any A of the mentioned type ( ) 2( ) 2 ,nV A V A= �  and 

 is the maximum error-correcting code for the channel  А. 2( ) nV A B×�

In the rest we denote the rank of any subset nM B⊆  by . ( )r M
According to Lemma 1, we can always assume that the vectors of the 

channel { }0 1, ,..., n
mA y у у В= ⊆  have the form ( )( )0 , 0,n r A

i iy y i N−= =� .  

Consequently,  
{ } ( ) ( ) ( )0 1 2, ,..., and log 1 .r A

mA y у у В m r A m= ⊆ ⎤ + ⎡ ≤⎦ ⎣
� � � � ≤  

Statement 4. If  ( ) ( )2log 1r A m= ⎤ + ⎡⎦ ⎣ ,  then  ( ) ( )2log 12 .n mV A − +⎤ ⎡⎦ ⎣=
 

Proof. According to Lemma 3, , where  

As 

( ) ( ) ( )2
log 12n mV A V A
⎤− +⎦= � ⎡⎣

( ) ( )2log 1 .r A m= ⎤ + ⎡⎦ ⎣
�

] log ( 1)[22
1( ) 2

m
n

mV A

+⎡ ⎤
−⎢ ⎥

+⎢ ⎥⎣ ⎦≤�  and ( ) (2 2log 1 1 log 1m m⎤ + ⎡ − < +⎦ ⎣ ) , 

hence, 
2]log ( 1)[21

1

m

m

+

≤ 2<
+

, consequently, ( ) 1V A =� . 
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Statement 5. If  ( ) ,r A m=  then ( ) 2 2
( 1)

m
n mV A

m
−⎡ ⎤

≤ ⎢ ⎥+⎣ ⎦
. The proof follows 

from Lemma 3, taking into account the Hamming’s upper bound.  
L e m m a  4 .  If for the channel { }0 1, ,..., mA y у у=  ( ) ,r A m<  then there are 

 such that , , ( , )nС V B X C V⊆ =1 ( ) ( ) 1 and | | | ( ) |, | | 1.r C r A V V A C m= + = = +  
Proof. From the condition ( )r A m<  it follows that one can choose an 

element  such  that y A∈ � r ( ) ( )\ .A y r A=�  Let .my y= �  We consider the set  

( ) ( ) ( ) ( ){ } ( ) 1
0 1 1 10 , 0 ,..., 0 , .r A

m r AС y y y e B +
− += ⊆� � � �  

It is obvious that  ( ) ( ) 1 ( ) 1, | | | | 1.r C r A r A С A m= + = + = = +� � �

Let { }10 1( ) , ,..., .NV A v v v=� �  We construct the following code : 1V�

( ){ }1 (( ( ) 0) (( ( ) 0) ( 0) .r AV V A V A y e += × ∪ × ⊕ ⊕� ��
) 1  

Since for any 1, 0,i j N∈  we have ( ) ( ) ( ) ( )( ) 10 0 0i j r Av v y e +≠ ⊕ ⊕� � , then 

1 2 ( )V V A= �� . 

Next we prove that ( )1, 1X C V .=� �  

Let us assume that there exist some pairs of vectors 
 such  that  1 2 1 1 2 1 2 1 2, , , and , ,a a V a a b b C b b∈ ≠ ∈ ≠�� ,

                  1 2 1 2.a a b b⊕ = ⊕                                              (2) 
Let us consider the following cases: 
1. If ( ) ( )1 20 , 0 ,i ja v a v i= =� � j≠ , then ( ) ( )1 20 , 0sb y b y= =� l�  for  

( ), 0, 1 ,s l m∈ − . s l≠  

Hence,  and this contradicts to ,i j s lv v y y⊕ = ⊕� � � � ( )( ), 1X A V A .=� �  

2. If ( ) ( ) ( ) ( )1 2 (0 , 0 0 ,i j ra v a v y e += = ⊕ ⊕� � ) 1A  then, using (2), we obtain 

( ) ( )1 2 1 , 0, 1 .lb b y l m⊕ = ∈ −�  

That is  and this contradicts to ,i j mv v y y⊕ ⊕ =� � � �l ( , ( )) 1,X A V A =� �  too. 

3. If ( ) ( ) ( ) ( ) ( ) ( )1 ( ) 1 2 ( ) 10 0 , 0 0 , , (0,i r A j r Aa v y e a v y e i j N+ += ⊕ ⊕ = ⊕ ⊕ ∈� � 1) , then 

( ) ( )1 2 ,0 , , 0, 1 , .s lb b y y s l m s l⊕ = ⊕ ∈ − ≠� �  
Consequently,  and this is a contradiction. Hence, 

. 

,i j l sv v y y⊕ = ⊕� � � �

( )1, 1X C V =� �

Let us consider the set  and the code  
that corrects the errors of . It follows from Lemma 2 that 

( )0n r C nС C −= × ⊆
�� B ( )

1
n r CV V B −= ×

��

C ( ),X C V =1,  because 

, and then, taking into account Lemma 3, we get ( ) ( ) 1r C r A= +�
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( ) ( ) 1
1 2 2 ( ) 2 (n r C n r AV V V A V A− − −= = =

� �� ) .

2

 
The Lemma is proved. 
T h e o r e m .  For any 1 1  nm≤ + ≤

( ) ( )2log 1
1

22 2
( 1)

m
n m n m

mD n
m

− +⎤ ⎡ .−⎦ ⎣
+

⎡ ⎤
≤ ≤ ⎢ ⎥+⎣ ⎦  

Proof. Since ( )2log 1m⎤ + ⎡⎦ n≤⎣ , then there are ( )2log 1m⎤ +⎦ ⎡⎣  linearly 

independent vectors in nB  generating a subspace that contains some channel 
 with     nA B⊆

( ) ( )2log 1 , 1.r A m A m= ⎤ + ⎡ =⎦ ⎣ +  
According to Statement 4 and as was obtained by other methods in [2], 

( )2]log 1 [
1( ) 2n m

mD n − +
+ ≥ . 

Concerning to the upper bound, let  be an additive channel satisfying  nA B⊆
( )11, ( ) .mA m V A D n+= + =

 
Let us consider the case .m n≤   
If ( ) ,r A m=  then we have, according Statement 5, 

2( ) 2 .
( 1)

m
n mV A

m
−⎡ ⎤

= ⎢ ⎥+⎣ ⎦
 

If ( )r A m< , then it follows from Lemma 4 that there are pairs ( , ), ,n
i i iA V A B⊆   

, 1, ( )n
iV B i m r A⊆ = − , i i i such that .| | | | 1, ( , ) 1, ( ) ( )A A m X A V r A r A i= = + = = +  

Then ( ) ( )1 1 1 2 2( ) | ( ) | | | | ( ) | | | | ( ) | ... | | | ( ) | .m n r A m r AD n V A V V A V V A V V A+ − −= = = = = = = =  

As ( )( ) ,m r Ar A m− =  then it follows from Statement 5 that 

1
2( ) 2 .

( 1)

m
n m

mD n
m

−
+

⎡ ⎤
≤ ⎢ ⎥+⎣ ⎦

 

Now we consider the case when . Let m n> 1 0m n mA A B−= × ⊆ . As 
 then we have from Lemma 3:  1 1( ) ( ),| | | |,r A r A A A= = 1( ) ( ) .m nV A V A B −= ×

Consequently,  1( ) ( ) 2m nV A V A .−=
 

According to the previous case, we get  

1
2| ( ) | ,

( 1)

m

V A
m

⎡ ⎤
≤ ⎢ ⎥+⎣ ⎦

 

 
hence,  ( ) 1

1
( ) 2( ) 2 .

( 1)2

m
n m

m m n

V A
D n V A

m
−

+ −

⎡ ⎤
= = ≤ ⎢ ⎥+⎣ ⎦

 

 

The Theorem is proved. 
Corollary 1. ] [2log ( 1)

1( ) 2n m
mD n − +
+ ≤ . 

Corollary 2. If  then 2 1sm = − , 1( ) 2 .n s
m+D n −=  
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Corollary 2 can be formulated in the following way: for any integer s n≤  
there is a channel  of cardinality nA B⊆ 2s , for which V(A) is a perfect code. 

But one cannot assert that the condition 2sA =  is sufficient. That is, the 

maximum cardinality error-correcting code for the channel A when 2sA =  is not 
always perfect. 

An Example. For  there is no error-correcting code for the additive 90n =
channel 2

0( )A y , where  { } 90
0\A y B⊆  is the basis, but 2

0( ) 2sA y = . 

The proof of this statement for the metrics of Hamming can be found in [7]: the 
proof follows from the fact that there is no  binary perfect code correcting 2-errors, 
except the trivial ones.  
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