Physical and Mathematical Sciences 2012, № 2, p. 42–49

Informatics

ON MINIMALITY OF ONE SET OF BUILT-IN FUNCTIONS FOR FUNCTIONAL PROGRAMMING LANGUAGES

G. A. MARTIROSYAN[*](#page-0-0)

Chair of Programming and Information Technologies YSU, Armenia

The functional programming language, which uses the set {*car, cdr, cons, atom, eq, if then_else*} of built-in functions is Turing complete (see [1]). In the present paper the minimality of this set of functions is proved.

*Keywords***:** functional programming language, built-in function, Turing completeness, minimality.

1. Introduction. In [1] it is proved that any functional programming language, which uses $\{car, cdr, cons, atom, eq, if then else\}$ built-in functions is Turing complete. Theorem 3.1 of this paper shows that the set of built-in functions Φ={*car*, *cdr*, *cons*, *atom*, *eq*, *if_then_else*} is minimal for functional programming languages, which use more than two atoms. Theorem 3.2 shows that the function *eq* is representable in a functional programming language, which uses only two atoms and the set $\Phi \setminus \{eq\}$ of built-in functions; this set is minimal for functional programming languages, which use only two atoms and it is the only proper subset of the set Φ , which is minimal for such languages.

2. Definitions and Preliminary Results.

Definition 2.1. Let *M* be a partially ordered set, which has a least element ⊥, and each element of *M* is comparable with itself and \perp only. Let us define the set *Types*:

1*. M*∈*Types*;

2. if $\alpha_1, \ldots, \alpha_n$, $\beta \in Types$, then the set of all monotonic mappings from $\alpha_1 \times \ldots \times \alpha_n$ into β (denoted by $[\alpha_1 \times \ldots \times \alpha_n \rightarrow \beta]$) belongs to *Types*.

Definition 2.2. Let $\alpha \in \text{Types}$ The order of the type α is a natural number (defined as $\text{ord}(\alpha)$), where:

1. if $\alpha = M$, then $\text{ord}(a_n) = 0$;

2. if $\alpha = [\alpha_1 \times \ldots \times \alpha_n \rightarrow \beta], \alpha_1, \ldots, \alpha_n, \beta \in Types$, then $ord([\alpha_1 \times \ldots \times \alpha_n \rightarrow \beta])$ $= max(ord(\alpha_1), ..., ord(\alpha_n), ord(\beta) + 1).$

For each $\alpha \in Types$ we have an α type countable set of variables V_{α} . Let $\alpha \in \text{Types}, \text{ord}(\alpha)=n, n \geq 0.$ If $c \in \alpha$, i.e. *c* is a constant of type α , then $\text{ord}(c)=n$. If $x \in V_\alpha$, i.e. *x* is a variable of type α , then *ord*(*x*)=*n*.

*

E-mail: gevorg.martirosyan@gmail.com

Let *Types* $V = \bigcup V$ $=\bigcup_{\alpha \in Types} V_{\alpha}$ and $\Lambda = \bigcup_{\alpha \in Types} \Lambda_{\alpha}$, where Λ_{α} is a set of typed *λ*-terms of

type α . Let us define the set of all terms Λ .

- 1. If $c \in \alpha$, $\alpha \in Types$, then $c \in A_{\alpha}$.
- 2. If $x \in V_\alpha$, $\alpha \in Types$, then $x \in A_\alpha$.
- 3. If $\tau \in \Lambda_{\{\alpha_1 \times \ldots \times \alpha_k \to \beta\}}, t_i \in \Lambda_\alpha, a_1, \ldots, a_k, \beta \in \text{Types}, i = 1, \ldots, k, k \geq 1, \text{ then } \tau(t_1, \ldots, t_k) \in \Lambda_\beta.$
- 4. If $\tau \in \Lambda_{\beta}$, $x_i \in V_{\alpha}, a_1, ..., a_k$, $\beta \in Types$, $i \neq j \Rightarrow x_i \neq x_j$, $i, j = 1, ..., k$, $k \geq 1$, then

$$
\lambda x_1 \dots x_k [\tau] \in \Lambda_{[\alpha_1 \times \ldots \times \alpha_k \to \beta]}.
$$

The notions of a free and bound occurrence of a variable in a term and the notation of a free variable of a term are introduced in a conventional way. The set of all free variables of a term *t* is denoted by $FV(t)$. Terms t_1 , t_2 are said to be congruent (which is denoted by $t_1 \equiv t_2$), if one term can be obtained from the other by renaming bound variables. Congruent terms are considered identical.

Definition 2.3. A functional program *P* is a system of equations of the form

$$
\begin{cases}\nF_1 = \tau_1 \\
\ldots \\
F_n = \tau_n\n\end{cases}
$$
\n(1)

where $F_i \in V_{\alpha_i}$, $i \neq j \Rightarrow F_i \neq F_j$, $\tau_i \in A_{\alpha_i}$, $\alpha_i \in Types$, $FV(\tau_i) \subset \{F_1,...,F_n\}$, *i*, *j* =1,…,*n*, *n* \geq 1, all used constants have an order \leq 1, constants of order 1 are computable functions and $\alpha_1 = [M^k \to M], k \ge 1$. In [2] it is proved that any program (1) has a least solution. Let $\leq f_1, \ldots, f_n \geq \in \alpha_1 \times \ldots \times \alpha_k$ is the least solution of the program *P*, then $f_p = f_1$ will be the fixpoint semantics of the program *P*.

We will consider functional programming languages (see [3]), which are defined with the following quadruple $L=(M, C, V, \Lambda(C, V))$, where *M* is a partially ordered set, which has a least element \perp , and each element of *M* is comparable with itself and \perp only, $C = M \cup \Psi$, Ψ is a set of built-in functions, $\Lambda(C, V)$ is the set of all terms, which are constructed using constants and variables only from the sets *C* and *V*. By $\wp(L)$ we will denote the set of programs, for which $F_i \in V$, $\tau_i \in \Lambda(C, V), i=1,...,n, n \geq 1.$

Definition 2.4. We will say that the function $f \in [M^k \to M]$, $k \ge 1$, is representable in the language *L*, if there exists a program $P \in \wp(L)$ such that $f_p = f$, where f_p is the fixpoint semantics of the program *P*.

Definition 2.5. The set of built-in functions Ψ is called minimal for the language $L=(M, C, V, A(C, V))$, where $C=M\cup\Psi$, if for any function $f\in\Psi$, *f* is not representable in the language $L' = (M, C', V, \Lambda(C', V))$, where $C' = M \cup (\Psi \setminus \{f\})$.

The notions of β and δ reductions are given in [4].

We will use the interpretation algorithm *FS* (full substitution and normal form reduction). The completeness of the interpretation algorithm *FS* follows from [4].

We will consider a finite set of atoms, $Atoms = \{a_1, \ldots, a_n\}$, $n \geq 2$, which contains at least two elements (*T*, *nil*∈*Atoms*). *T* and *nil* correspond to logical true and false values respectively.

Definition 2.6. We define the set of *S-expressions* as follows:

1. If *t*∈*Atoms*, then *t*∈*S-expressions*;

2. If $t_1,..., t_n \in S$ -expressions $(n \geq 0)$, then $(t_1... t_n) \in S$ -expressions.

If $l = (t_1 ... t_n)$, $t_1,..., t_n \in S$ -expressions $(n \ge 0)$, then *l* is called a list. In the case *n*=0, the list is empty and denoted by *nil* (which also corresponds to the logical false value). In the case $n > 0$, t_1 and $(t_2 ... t_n)$ are correspondingly called the head and the tail of the list *l*.

Let *M=S-expressions*∪{⊥} be a partially ordered set, where ⊥ is the least element of *M*, and each element of *M* is comparable with itself and \perp only.

We will consider the following functions, where *car*, *cdr*, $atom \in [M \rightarrow M]$, *cons*, *eq*∈[M^2 → M], *if then else*∈[M^3 → M],

$$
car(m) = \begin{cases} m_1, \text{ if } m = (m_1 \dots m_k), m_1 \in S-\text{expressions, } i=1,\dots,k, k \ge 1, \\ \perp, \text{ otherwise;} \end{cases}
$$

\n
$$
cdr(m) = \begin{cases} nil, \text{ if } m = (m_1), m_1 \in S-\text{expressions, } \\ (m_2 \cdots m_k), \text{ if } m = (m_1 \cdots m_k), m_i \in S-\text{expressions, } i=1,\dots,k, k>1, \\ \perp, \text{ otherwise;} \end{cases}
$$

\n
$$
cons(m_0, m) = \begin{cases} (m_0), \text{ if } m_0 \in S-\text{expressions, } m = nil, \\ (m_0, m_1 \cdots m_k), \text{ if } m = (m_1 \cdots m_k), m_i \in S-\text{expressions, } i=1,\dots,k, k \ge 1, \\ \perp, \text{ otherwise;} \end{cases}
$$

\n
$$
atom(m) = \begin{cases} T, \text{ if } m \in Atoms, \\ nil, \text{ if } m \notin Atoms, m \notin \perp, \\ \perp, \text{ otherwise;} \end{cases} eq(m_1, m_2) = \begin{cases} T, \text{ if } m_1, m_2 \in Atoms, m_1 = m_2, \\ nil, \text{ if } m_1, m_2 \in Atoms, m_1 \ne m_2, \\ \perp, \text{ otherwise;} \end{cases}
$$

 $\left(m_2, \text{if } m_1 \in S\text{-expressions}, m_1 \neq nil \right)$

if _then_else(m_1, m_2, m_3) = $\begin{cases} m_3, & \text{if } m_1 = nil, \end{cases}$ \bigcup , otherwise.

3. The Main Results. Let $\Phi = \{car, \, cdr, \, cons, \, atom, \, eq, \, if \, then \, else\}.$

Theorem 3.1. The set of built-in functions Φ is minimal for the language $L=(M, C, V, \Lambda(C, V))$, where $C=M\cup\Phi$, which uses more than two atoms.

Theorem 3.2. For the languages, which use only two atoms, we have:

a) the function *eq* is representable in the language $L=(M, C, V, \Lambda(C, V))$, where *C*=*M*∪(Φ\{*eq*});

b) the set of built-in functions Φ \{*eq*} is minimal for the language *L*=(*M*, *C*, *V*, Λ (*C*, *V*)), where *C*=*M* \cup (Φ\{*eq*});

c) for any function *f*∈Φ\{*eq*}, *f* is not representable in the language $L=(M, C, V, \Lambda(C, V))$, where $C=M\cup(\Phi\backslash\{f\})$.

The proof of Theorems 3.1 and 3.2 will be deduced from Lemmas 3.1–3.6. We will consider the following notion of δ -reduction:

1. $\leq f(m_1)$, $m \geq \epsilon \delta$, where $f \in \{car, cdr, atom\}$, $m_1, m \in M$ and $f(m_1) = m$;

2. $\leq g(m_1, m_2), m \geq \epsilon \delta$, where $g \in \{cons, eq\}, m_1, m_2, m \in M$ and $g(m_1, m_2) = m$;

3. \lt *if nil then t*₁ *else t*₂, *t*₂ \lt $\epsilon \delta$, where *t*₁, *t*₂ \in Λ _{*M*};

 $4 \leq if \, m \, then \, t_1 \, else \, t_2, \, t_1 \geq \epsilon \delta$, where $m \in M, \, m \neq n \mathcal{i}, \, m \neq \bot, \, t_1, \, t_2 \in \Lambda_M;$

5. \leq *if* \perp *then t*₁ *else t*₂, \perp $\geq \epsilon \delta$, where *t*₁, *t*₂∈ Λ _{*M*}.

In [4] it is given the definition of real notion of δ -reduction. Also from [4] it follows that the defined notion of δ -reduction is real.

To each term $t \in \Lambda_{\alpha}$, $\alpha \in Types$, we will correspond a set $C^0(t)$, which contains constants of order 0 of the term *t*:

1. If $t \equiv c$, $c \in M$, then $C^0(t) = \{c\}$. If $t \equiv c$, $c \in \alpha$, $\alpha \in Types$, $\text{ord}(\alpha) \neq 0$, then $C^0(t)=\varnothing;$

2. If $t=x, x \in V$, then $C^0(t)=\emptyset$;

3. If
$$
t \equiv \tau(t_1,...,t_k) \in \Lambda_\beta
$$
, $\tau \in \Lambda_{[\alpha_1 \times ... \times \alpha_k \to \beta]}, t_i \in \Lambda_{\alpha_i}$, $\alpha_i, \beta \in Types$, $i = 1,...,k, k \ge 1$,

then $C^0(\tau(t_1,...,t_k)) = C^0(\tau) \cup C^0(t_1) \cup ... \cup C^0(t_k);$

4. If
$$
t = \lambda x_1 \dots x_k [\tau] \in \Lambda_{[\alpha_1 \times \ldots \times \alpha_k \to \beta]}, \tau \in \Lambda_{\beta}, x_i \in V_{\alpha_i}, \alpha_i, \beta \in \text{Types}, i = 1, \ldots, k, k \ge 1,
$$

 $i \neq j \Rightarrow x_i \Rightarrow x_j, i, j = 1, ..., k$, then $C^0(\lambda x_1 ... x_k[\tau]) = C^0(\tau)$.

Let us define the change of underlined \underline{m} by m' in a term t (denoted by $t\{\underline{m}\Rightarrow m'\}$, where $t\in L_{\alpha}$, $\alpha \in Types$, $m, m' \in M$:

- 1. If $t \equiv c, c \in \alpha, \alpha \in Types$, then
- 1.1. If $t \equiv m$ and *m* is underlined, then *m'*;
- 1.2. If $t\equiv(s_1 \ldots s_n)$, $s_i \in M$, $n \ge 0$, then $t \{m \Rightarrow m'\} \equiv (s_1 \{m \Rightarrow m'\}, \ldots, s_n \{m \Rightarrow m'\})$;
- 1.3. Otherwise, *t*;
- 2. If $t \equiv x$, $x \in V$, then t ;

3. If
$$
t = \tau(t_1,...,t_k) \in \Lambda_\beta
$$
, $\tau \in \Lambda_{[\alpha_1 \times ... \times \alpha_k \to \beta]}, t_i \in \Lambda_{\alpha_i}$, $\alpha_i, \beta \in \text{Types}, i = 1,...,k$,

 $k \ge 1$, then $\tau(t_1, ..., t_k)$ { $\underline{m} \Rightarrow m'$ } = τ { $\underline{m} \Rightarrow m'$ } (t_1 { $\underline{m} \Rightarrow m'$ }, ..., t_k { $\underline{m} \Rightarrow m'$ });

4. If
$$
t = \lambda x_1 \dots x_k [\tau] \in \Lambda_{[\alpha_1 \times \ldots \times \alpha_k \to \beta]}, \tau \in \Lambda_{\beta}, x_i \in V_{\alpha_i}, i = 1, \ldots, k, k \ge 1, a_1, \ldots a_k,
$$

 $\beta \in \text{Types}, \ \ i \neq j \Rightarrow x_i \neq x_j, \ \ i, j = 1, \ldots, k, \text{ then } \lambda x_1 \ldots x_k[\tau] \{ \underline{m} \Rightarrow m' \} \equiv \lambda x_1 \ldots x_k[\tau \{ \underline{m} \Rightarrow m' \}].$

We will say that term *t'* is obtained from term $t(t, t' \in \Lambda_{\alpha}, \alpha \in Types)$ by changing m_1 by m'_1, \ldots, m_n by m'_n (denoted by $t\{m_1 \Rightarrow m'_1, \ldots, m_n \Rightarrow m'_n\} \equiv t'$), where *m_i*, *m'*_{*i*}∈*M*, *i*≠*j*⇒*m_i*≠*m_i*, *i*, *j*=1,…,*n*, *n* ≥1, if there exist terms *t*₀,…,*t_n* ∈ $Λ_α$ such that $t \equiv t_0$, $t' \equiv t_n$ and $t_i \{m_i \Rightarrow m'_i\} \equiv t_{i+1}, i = 0, \ldots, n-1, n \geq 1$.

Let us consider the functional programming language

 $L_1=(M, C_1, V, \Lambda(C_1, V))$, where $C_1=M\cup(\Phi\setminus\{car\})$.

Lemma 3.1. The function *car* is not representable in the language L_1 .

Proof. We will prove this Lemma by contradiction. Let us assume that the function *car* is representable in the language L_1 . That means there exists a program *P*₁∈ \wp (*L*₁), (*F*₁∈ *V*_{[*M*→*M*]) such that *f*_{*R*} =*car*. We consider the action of the} interpretation algorithm *FS* for two cases: $FS(P_1, F_1((T)))$ and $FS(P_1, F_1((nil)))$. *FS*(P_1 , $F_1((T))$) and $FS(P_1, F_1((nil)))$ are definied, because *car*((*T*)) and *car*((*nil*)) are defined and the interpretation algorithm *FS* is complete.

If $FS(P_1, F_1((T))) \neq T$, then $f_R \neq car$, and we will get a contradiction. So, let us assume that $FS(P_1, F_1((T)))=T$. We will show that $FS(P_1, F_1((nil)))=T\neq nil$, so, $f_R \neq car$ and we will get a contradiction again.

In the term $F_1((T))$, which is an input data of the interpretation algorithm *FS*, the atom *T* will be underlined. So, we will consider $FS(P_1, F_1((\underline{T}))$ and $FS(P_1, F_1((nil))).$

We will consider two sequences of terms t_0, t_1, \cdots and t'_0, t'_1, \cdots . $t_0 \equiv F_1((T))$, and for any $i \geq 0$, t_{i+1} is obtained from t_i by applying one step of the interpretation algorithm *FS* with input data P_1 and t_i . Also let $t'_{0} \equiv F_1((ni))$ and for any $i \geq 0$, t'_{i+1} is obtained from t'_{i} by applying one step of the interpretation algorithm *FS* with input data P_1 and t'_i .

There exists $n > 0$ such that $t_n = T$, because $FS(P_1, F_1((T))) = T$, and the term t_{i+1} is obtained from t_i by applying one of the steps of the interpretation algorithm *FS* with input data P_1 and t_i .

By induction it can be proved that for any $0 \le I \le n$, $\underline{T} \notin C^0(t_i)$ and t_i { $T \Rightarrow \Rightarrow nil$ } $\equiv t_i$. So, we get $FS(P_1, F_1((nil))) = T \neq nil$.

This contradiction proves the Lemma.

Let us consider the functional programming language

 $L_2 = (M, C_2, V, \Lambda(C_2, V))$, where $C_2 = M \cup (\Phi \setminus \{cdr\}).$

Lemma 3.2. The function *cdr* is not representable in the language *L*2.

Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. Here we consider the work of the interpretation algorithm *FS* for two cases:

FS(P_2 , $F_1((T_1))$) and $FS(P_2, F_1((T_1, T_2)))$. By induction it can be proved that for any $0 \le i \le n$, $\overline{T} \notin C^0(t_i)$, $C^0(t_i)$ does not contain a list containing a sublist with head \overline{T} and *t_i*{ \underline{T} ⇒*nil*}≡ *t*[']*i*</sub>. So, we get *FS*(*P*₂, *F*₁((*T nil*)))=(*T*)≠(*nil*). Consequently, we get a contradiction, which proves the Lemma.

Definition 3.1. To each *m*∈*M* we will correspond a natural number *Am* (we will call it the count of atoms of *m*):

1. If *m*=⊥, then *Am*= 0;

2. If $m \in Atoms$, then $A_m = 1$;

3. If $m=(m_1 \ldots m_n)$, $m_i \in M$, $i=1,\ldots,n$, $n \ge 0$, then $A_m = A_m + \ldots + A_m$.

Let *P* be a program. Let $\{m_1, \ldots, m_n\}$ be the set of constants of order 0 used in the program *P*, where $m_i \in M$, $i=1,...,n$, $n \ge 0$. By A_P we will devote the following: $A_P = \max\left\{A_{m_1},..., A_{m_n}\right\} + 1$.

Let us consider the functional programming language

 $L_3 = (M, C_3, V, \Lambda(C_3, V))$, where $C_3 = M \cup (\Phi \setminus \{cons\})$.

Lemma 3.3. The function *cons* is not representable in the language L_3 .

Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. Here we consider the work of the interpretation algorithm *FS*: $FS(P_3, F_1(TT))$, where . By induction it can be proved that for any 3 $(T...T)$ *AP* $T' = (T...T)$. By induction it can be proved that for any $0 \le i \le n$

$$
\max\{A_m \in C^0(t_i)\} \le A_{P_3}. \text{ So, we get } FS(P_3, F_1(T, T')) \neq \underbrace{(T \dots T)}_{A_{P_3}+1}. \text{ The contradiction}
$$

proves the Lemma.

Let us consider the functional programming language $L_4 = (M, C_4, V, \Lambda(C_4, V))$, where $C_4 = M \cup (\Phi \setminus \{atom\})$. *Lemma 3.4.* The function *atom* is not representable in the language *L*4.

Proof. This Lemma will be proved by contradiction. Let us assume that the function *atom* is representable in the language *L*4. That means there exists a program $P_4 \in \mathcal{P}(L_4)$, $(F_1 \in V_{[M \to M]})$ such that $f_{P_4} = atom$. We are interested in the result of the interpretation algorithm *FS* in the following two cases: $FS(P_4, F_1(T))$ and $FS(P_4, F_1((T)))$.

FS(P_4 , $F_1(T)$) and $FS(P_4, F_1((T)))$ are well definied, because *atom*(*T*) and *atom*((*T*)) are defined and the interpretation algorithm *FS* is complete.

If *FS*(*P*₄, *F*₁(*T*))≠*T*, then $f_{P_i} ≠ atom$, and we will get a contradiction. So, let us assume that $FS(P_4, F_1(T))=T$. We will show that $FS(P_4, F_1(T))\neq nil$ implying $f_{P_i} \neq atom$ and we will get a contradiction once more. In the term $F₁(T)$, which is an input data of the interpretation algorithm *FS*, the atom *T* will be underlined. Namely, we will consider $FS(P_4, F_1(T))$ and $FS(P_4, F_1(T))$.

We will consider two sequences of terms t_0 , t_1 ,... and t'_0 , t'_1 ,... (in these terms some subterms of order 0 will be double underlined). $t_0 \equiv F_1((\underline{T}))$, $t'_0 \equiv F_1((\underline{T}))$ and for any $i \geq 0$, t_{i+1} and t'_{i+1} are correspondingly obtained from t_i and t'_{i} in the following way:

1. If the leftmost redex r of the term t_i is a subterm of double underlined subterm, then $t'_{i+1} = t'_{i}$ and the term t_{i+1} is obtained from the term t_i by replacing the redex r with its bundle. In the term t_{i+1} the subterm corresponding to the double underlined subterm, which contains the term r , is double underlined. In the term t_{i+1} all terms, which are double underlined in the term t_i , are double underlined;

2. If the leftmost redex r of the term t_i is not a subterm of double underlined subterm, and if the leftmost redex r' of the term t' is a subterm of double underlined subterm, then $t_{i+1} \equiv t_i$ and the term t'_{i+1} is obtained from the term t'_{i} by replacing the redex r' with its bundle. In the term t'_{i+1} the subterm corresponding to the double underlined subterm, which contains the term *r*′, is double underlined. In the term t'_{i+1} all terms, which are double underlined in the term t'_{i} , are double underlined;

3. If the leftmost redex *r* of the term *ti* and the leftmost redex *r*′ of the term t' ^{*i*} are not subterms of double underlined subterms, then the terms t_{i+1} and t'_{i+1} are obtained correspondingly from the terms t_i and t'_i by replacing the redexes *r* and *r'* with their bundles. Let *r* be a β -redex $\lambda x_1 ... x_k [\tau_0](\tau_1 ... \tau_k)$, where $x_i \in V_{\alpha_i}$, $\tau_i \in \Lambda_{\alpha_i}$, $\tau_0 \in \Lambda$, $\alpha_i \in Types$, $i = 1,...,k$, $k \ge 1$. In the bundles of redexes the subterms, which correspond to double underlined subterms of τ_0 , are also double underlined. If for any $i=1,\ldots,k, k \geq 1$, a subterm of the term τ_i is double underlined, then if in τ_0 a free occurrence of the variable x_i is not in double underlined subterm, then after substitution double underlined subterm of the term *ti* is double underlined, otherwise, it is not. Let r be a δ -redex. During the proof of this Lemma the cases of δ -redexes are considered separately and it is denoted, which subterms in bundle of δ -redex, are double underlined. Double underlined subterms of the term *t*′*i+*1 are obtained similarly;

4. If t_i ∈ *NF*, $FV(t_i) \cap {F_1, \ldots, F_n}$ ≠∅ and in the term t_i all free occurrences of the variables F_1, \ldots, F_n stand in double underlined subterms, then

 $t_{i+1} \equiv t_i \{ \tau_1/F_1, \ldots, \tau_n/F_n \}$ and $t'_{i+1} \equiv t'_{i}$. In the term t_{i+1} subterms corresponding to double underlined subterms of the term are double underlined;

5. If $t_i \in NF$, $FV(t_i) \cap {F_1,...,F_n} \neq \emptyset$, $t'_i \in NF$, $FV(t'_i) \cap {F_1,...,F_n} \neq \emptyset$, and in the term t'_I all free occurrences of the variables F_1, \ldots, F_n stand in double underlined subterms, then $t'_{i+1} \equiv t'_{i} \{ \tau_1/F_1, \ldots, \tau_n/F_n \}$ and $t'_{i+1} \equiv t_i$. In the term t'_{i+1} subterms corresponding to double underlined subterms of the term *t*′*i* are double underlined;

6. If $t_i \in NF$, $FV(t_i) \cap {F_1, \ldots, F_n} \neq \emptyset$ and if in the term t_i at least one of free occurrences of the variables F_1, \ldots, F_n is not in double underlined subterm, then $t_{i+1} \equiv t_i \{ \tau_1/F_1, \ldots, \tau_n/F_n \}$ and $t'_{i+1} \equiv t'_{i} \{ \tau_1/F_1, \ldots, \tau_n/F_n \}$. In the terms t_{i+1} and t'_{i+1} subterms corresponding to double underlined subterms of the terms t_i and t'_i are double underlined.

It is obvious that in the sequences t_0, t_1, \cdots and t'_0, t'_1, \cdots there are no infinite sequences $t_i = t_{i+1} = t_{i+2} = \cdots$ or $t'_i = t'_{i+1} = t'_{i+2} = \cdots$ $(i \ge 0)$. For any $i > 0$ we will double underlin those subterms of order 0, in the term *ti*, for which corresponding subterms in the term t_i' are \perp , and in the term t_i' we will double underlin those subterms of order 0, for which corresponding subterms in the term t_i are \perp . By $\tilde{\tau}$ we will denote the term obtained from the term τ by replacing all double underlined subterms of order 0 with ⊥.

Then there exists $n>0$ such that $t_n=T$, because $FS(P_4, F_1(T))=T$ and the term t_{i+1} is either congruent to the term t_i or obtained from t_i by applying one of the steps of the interpretation algorithm *FS* with input data *P*4 and *ti*.

By induction it can be proved that for any $0 \le i \le n$, $\tilde{t}_i \{ \underline{T} \Rightarrow (T) = \tilde{t}'_i \}$. So, we get $FS(P_4, F_1((T)))=T$, $FS(P_4, F_1((T)))=(T)$ or $FS(P_4, F_1((T)))=\perp$, so, $FS(P_4, F_1((T))) \neq nil$. So, we get a contradiction, which proves the Lemma.

Let us consider the functional programming language $L_5 = (M, C_5, V, \Lambda(C_5, V))$, where $C_5 = M \cup (\Phi \setminus \{ \text{if } \text{then } \text{else} \})$.

Lemma 3.5. The function if then else is not representable in the language L_5 .

Proof. Let us assume that the function *if* then else is representable in the language L_5 . It follows that the function $g \in [M \rightarrow M]$ will be representable in the language L_5 also, where

$$
g(m) = \begin{cases} T, & \text{if } m = T, \\ (T), & \text{if } m = nil, \\ \perp, & \text{otherwise.} \end{cases} m \in M, T, nil \in Atoms,
$$

We will get a desired contradiction by proving that the function *g* is not representable in the language L_5 . The proof is similar to the proof of Lemma 3.1. Here we consider the action of the interpretation algorithm *FS* for two cases: $FS(P_5, F_1(\underline{T}))$ and $FS(P_5, F_1(nil))$. By induction it can proved that for any $0 \le i \le n$, \tilde{t}_i { $\underline{T} \Rightarrow nil$, $\underline{nil} \Rightarrow T$ } = \tilde{t}'_i . So, we get $FS(P_5, F_1(nil))=T$, $FS(P_5, F_1(nil))=nil$ or $FS(P_5, F_1(nil)) = \perp$ and, so, $FS(P_5, F_1(nil)) \neq T$. So, we get a contradiction, which proves the Lemma.

Let us consider the functional programming languages

 $L_6 = (M, C_6, V, \Lambda(C_6, V))$, and $L'_6 = (M, C_6, V, \Lambda(C_6, V))$,

where $C_6 = M \cup (\Phi \setminus \{eq\})$. The language L_6 uses more than two atoms, the language L'_{6} uses only two atoms.

Lemma 3.6. The function *eq* is representable in the language L'_6 and is not representable in the language L_6 .

The function eq is representable in the language L'_6 , because it is the least solution of the following equation:

 $F_{eq} = \lambda xy[$ if atom(x) then(if atom(y) then (if x then y else (if y then nil else T)) else \perp).

Now let us show that the function *eq* is not representable in the language L_6 , which uses more than two atoms, $\{a, T, nil\} \subset Atoms$.

It we assume that the function eq is representable in the language L_6 , then the function $f \in [M \rightarrow M]$ will be representable in the language L_6 also, where

$$
f(m) = \begin{cases} T, & \text{if } m = a, \\ a, & \text{if } m = T, \\ \perp, & \text{otherwise.} \end{cases} m \in M, a, T \in Atoms, a \neq T, nil,
$$

To get a contradiction, let us prove that the function *f* is not representable in the language L_6 . The proof is similar to the proof of Lemma 3.1. Now we consider the work of the interpretation algorithm *FS* for two cases: $FS(P_6, F_1(\underline{a}))$ and *FS*(P_6 , $F_1(T)$). By induction it can be proved that for any $0 \le i \le n$, $t_i \{ \underline{a} \Rightarrow T \} \equiv t'_i$. So, we get $FS(P_6, F_1(T)) = T \neq a$, the contradiction proves the Lemma.

Received 21.02.2012

REFERENCES

- 1. **Martirosyan G.A.** Proceedings of the Conference on Computer Science and Information Technologies (CSIT-2011). Yer., 2011, p. 370–373.
- 2. **Nigiyan S.A.** // Programming and Computer Software, 1992, v. 17, p. 290–297.
- 3. **Nigiyan S.A.** // Programming and Computer Software, 1993, v. 19, p. 71–78.
- 4. **Budaghyan L.E.** Proceedings of the Conference on Computer Science and Information Technologies (CSIT-2005). Yer., 2005, p. 16–19.