
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2012, № 2, p. 42–49

I n f o r m a t i c s

ON MINIMALITY OF ONE SET OF BUILT-IN FUNCTIONS FOR
FUNCTIONAL PROGRAMMING LANGUAGES

G. A. MARTIROSYAN*

Chair of Programming and Information Technologies YSU, Armenia

The functional programming language, which uses the set {car, cdr, cons,
atom, eq, if_then_else} of built-in functions is Turing complete (see [1]). In the
present paper the minimality of this set of functions is proved.

Keywords: functional programming language, built-in function, Turing
completeness, minimality.

1. Introduction. In [1] it is proved that any functional programming

language, which uses {car, cdr, cons, atom, eq, if_then_else} built-in functions is
Turing complete. Theorem 3.1 of this paper shows that the set of built-in functions
Φ={car, cdr, cons, atom, eq, if_then_else} is minimal for functional programming
languages, which use more than two atoms. Theorem 3.2 shows that the function
eq is representable in a functional programming language, which uses only two
atoms and the set of built-in functions; this set is minimal for functional
programming languages, which use only two atoms and it is the only proper subset
of the set , which is minimal for such languages.

\ { }eqΦ

Φ
2. Definitions and Preliminary Results.
Definition 2.1. Let M be a partially ordered set, which has a least element ⊥, and

each element of M is comparable with itself and ⊥ only. Let us define the set Types:
1. M∈Types;
2. if α1,…,αn, β∈Types, then the set of all monotonic mappings from

α1×…×αn into β (denoted by [α1×…×αn→ β]) belongs to Types.
Definition 2.2. Let α∈Types The order of the type α is a natural number

(defined as ord(α)), where:
1. if ,Mα = then () 0nord a = ;
2. if 1 1 1[...], ,..., , , then ([...])n n nTypes ordα α α β α α β α α β= × × → ∈ × × → =

1max(() () () +1).n= ord ,...,ord , ordα α β
For each Typesα ∈ we have an α type countable set of variables Vα .

Let α∈Types, ord(α)=n, n≥0. If c∈α, i.e. c is a constant of type α, then ord(c)=n.
If x∈Vα , i.e. x is a variable of type α, then ord(x)=n.

* E-mail: gevorg.martirosyan@gmail.com

mailto:gevorg.martirosyan@gmail.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

43

Let
Types

V V
∈

= ∪ α
α

and
Types

α
α∈

Λ = Λ∪ , where αΛ is a set of typed λ-terms of

type α . Let us define the set of all terms Λ.
1. If c∈α, α∈Types, then c∈Λα.
2. If x∈Vα, α∈Types, then x∈Λα.
3. If , 1,k k

1[...] 1, , ,..., ≥ then 1(,...,) .kt t βτ ∈Λ , , 1,...,
k i kt aα α β α a Types iτ β× × →∈Λ ∈Λ ∈ =

4. If 1, , ,..., , , , , 1,..., , 1,i k i jx V a a Types i j x x i j k kβ ατ β∈Λ ∈ ∈ ≠ ⇒ ≠ = ≥ then

11 [...]... []
kkx x α α βλ τ × × →∈Λ .

The notions of a free and bound occurrence of a variable in a term and the
notation of a free variable of a term are introduced in a conventional way. The set
of all free variables of a term t is denoted by FV(t). Terms t1, t2 are said to be
congruent (which is denoted by 1t t2≡), if one term can be obtained from the other
by renaming bound variables. Congruent terms are considered identical.

Definition 2.3. A functional program P is a system of equations of the form
1 1

n n

F

F

=⎧
⎪
⎨
⎪ =⎩

"
τ

τ

, (1)

where 1, , , , () { ,..., },
i ii i j i i i nF V i j F F Types FV F Fα ατ Λ α τ∈ ≠ ⇒ ≠ ∈ ∈ ⊂

i, j =1,…,n, n ≥ 1, all used constants have an order ≤ 1, constants of order 1 are
computable functions and α1=[Mk → M], k ≥ 1. In [2] it is proved that any program
(1) has a least solution. Let <f1,…, fn>∈α1×…×αk is the least solution of the
program P, then 1pf f= will be the fixpoint semantics of the program P.

We will consider functional programming languages (see [3]), which are
defined with the following quadruple L=(M, C, V, Λ(C, V)), where M is a partially
ordered set, which has a least element ⊥, and each element of M is comparable
with itself and ⊥ only, C =M∪Ψ, Ψ is a set of built-in functions, Λ(C, V) is the
set of all terms, which are constructed using constants and variables only from the
sets C and V. By ()L℘ we will denote the set of programs, for which Fi∈V,
τi∈Λ(C, V), i= 1,..., ,n n ≥ 1.

Definition 2.4. We will say that the function f∈[M k → M], k ≥ 1, is represen-
table in the language L, if there exists a program P∈℘(L) such that fp=f, where pf
is the fixpoint semantics of the program P.

Definition 2.5. The set of built-in functions Ψ is called minimal for the
language L=(M, C, V, Λ(C, V)), where C =M∪Ψ, if for any function f∈Ψ,
f is not representable in the language (, , , (,)),L M C V C V′ ′ ′= Λ where

 (\ { }).C M′ = ∪ fΨ
The notions of β and δ reductions are given in [4].
We will use the interpretation algorithm FS (full substitution and normal form

reduction). The completeness of the interpretation algorithm FS follows from [4].
We will consider a finite set of atoms, Atoms={a1,…,an}, n≥2, which

contains at least two elements (T, nil∈Atoms). T and nil correspond to logical true
and false values respectively.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

44

Definition 2.6. We define the set of S-expressions as follows:
1. If t∈Atoms, then t∈S-expressions;
2. If 1,..., nt t ∈S-expressions (n ≥ 0), then (1 nt ... t)∈S-expressions.
If l=(), ∈ S-expressions (n ≥ 0), then l is called a list. In the

case n=0, the list is empty and denoted by nil (which also corresponds to the
logical false value). In the case n > 0, t1 and (t) are correspondingly called
the head and the tail of the list l.

1 nt ... t 1,..., nt t

2 n... t

Let M=S-expressions∪{⊥} be a partially ordered set, where ⊥ is the least
element of M, and each element of M is comparable with itself and ⊥ only.

We will consider the following functions, where car, cdr, atom∈[M→M],
cons, eq∈[M2→M], if then else∈[M3→M],

1 1 1

1 1

2 1

0 0

0

, if (...), , 1,..., , 1,
()

, otherwise;

, if (),
() (), if (), , 1,..., , 1,

, otherwise;

(), if
(,)

k

k k i

m m m m m S-expressions i= k k
car m

nil m m m S-expressions,
cdr m m m m m m m S-expressions i= k k>

m m S
cons m m

= ∈ ≥⎧
= ⎨

⊥⎩
= ∈⎧

⎪= = ∈⎨
⎪⊥⎩

∈

=

" "

0 1 1

1 2 1 2

1 2 1 2 1 2

, ,
(,), if (), , 1,..., , 1,

, otherwise;

, if , , ,, if ,
() , if , , (,) , if , ,

, otherwise;

k k i

-expressions m nil
m m m m m m m S-expressions i= k k

T m m Atoms m mT m Atoms
atom m nil m Atoms m eq m m nil m m Atoms m m

=⎧
⎪ = ∈⎨
⎪⊥⎩

∈ =∈⎧
⎪= ∉ ∉⊥ = ∈ ≠⎨
⎪⊥⎩

" "

2 1 1

1 2 3 3 1

,
, otherwise;

, if , ,
(, ,) , if ,

, otherwise.

m m S-expressions m nil
if _then_else m m m m m nil

⎧
⎪
⎨
⎪⊥⎩

∈ ≠⎧
⎪= =⎨
⎪⊥⎩

≥

3. The Main Results. Let Φ = {car, cdr, cons, atom, eq, if_then_else}.
T h e o r e m 3 . 1 . The set of built-in functions Φ is minimal for the

language L=(M, C, V, Λ(C, V)), where C=M∪Φ, which uses more than two atoms.
T h e o r e m 3 . 2 . For the languages, which use only two atoms, we have:
a) the function eq is representable in the language L=(M, C, V, Λ(C, V)),

where C=M∪(Φ\{eq});
b) the set of built-in functions Φ\{eq} is minimal for the language

L=(M, C, V, Λ(C, V)), where C=M∪(Φ\{eq});
c) for any function f∈Φ\{eq}, f is not representable in the language

L=(M, C, V, Λ(C, V)), where C=M∪(Φ\{f}).
The proof of Theorems 3.1 and 3.2 will be deduced from Lemmas 3.1–3.6.
We will consider the following notion of δ-reduction:
1. <f(m1), m>∈δ , where f∈{car, cdr, atom}, m1,m∈M and f(m1) =m;
2. <g(m1, m2), m>∈δ , where g∈{cons, eq}, m1, m2, m∈M and g(m1, m2) =m;

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

45

3. < if nil then t1 else t2, t2>∈δ , where t1, t2∈ΛM;
4. < if m then t1 else t2, t1>∈δ , where m∈M, m≠nil, m≠⊥, t1, t2∈ΛM;
5. < if ⊥ then t1 else t2, ⊥>∈δ , where t1, t2∈ΛM.
In [4] it is given the definition of real notion of δ-reduction. Also from [4] it

follows that the defined notion of δ-reduction is real.
To each term t ∈Λα, α∈Types, we will correspond a set C0(t), which

contains constants of order 0 of the term t:
1. If t≡c, c∈M, then C0(t)={c}. If t≡c, c∈α, α∈Types, ord(α)≠0, then

C0(t)=∅;
2. If t≡x, x∈V , then C0(t)=∅;
3. If ≥

11 [](, ,) , , , , , 1, , , 1,
k ik i it t t≡ ∈Λ t Types i k k× × → ∈Λ ∈ =…… …β α α β α∈Λ τ τ α β

0then 0 0 0
1 1((, ,)) () () ();k kC t t C C t C t= ∪ ∪ ∪… …τ τ

4. If
11 [][] , , , , , 1, , , 1,

k ik i it x x x V Types i k kα α β β αλ τ τ α β× × →≡ ∈Λ ∈Λ ∈ ∈ = ≥…… …

 then ., , 1,..., ,i ji j x x i j k≠ ⇒ ⇒ = 0 0
1(… []) (kC x x = C)λ τ τ

Let us define the change of underlined m by m′ in a term t (denoted by
t{m⇒m′), where t∈Lα, α∈Types, m, m′∈M:

1. If t ≡c, c ∈ α, α ∈Types, then
1.1. If t ≡ m and m is underlined, then m′;
1.2. If t≡(s1 … sn), si∈M, n ≥0 , then t{m⇒m′}≡(s1{m⇒m′},…, sn{m⇒m′});
1.3. Otherwise, t;
2. If t ≡x, x∈V, then t;
3. If ,t t k

11 [](, ,) Λ , Λ , Λ , , , 1, ,
k ik i it t Types iβ α α β α≡τ τ α β× × →∈ ∈ ∈ ∈…… …=

1,k ≥ then 1 1(, ,){ } { }({ }, , { });k kt t m m m m t m m t m mτ τ′ ′ ′ ′⇒ ≡ ⇒ ⇒ ⇒… …
4. If kt x

11 [...] 1... [] Λ , Λ , , 1,..., , 1, ,... ,
k ik ix x V i k k a aα α β β αλ τ τ× × →≡ ∈ ∈ ∈ = ≥

β∈Types, i≠j⇒ xi≠xj, i, j=1,…,k, then λx1…xk[τ]{m⇒m′}≡ λx1…xk[τ {m⇒m′}].
We will say that term t′ is obtained from term t(t, t′∈Λα, α∈Types) by

changing m1 by m′1,…,mn by m′n (denoted by t{m1⇒m′1,…, mn⇒m′n}≡t′), where
mi, m′i∈M, i≠j⇒mi≠mj, i, j=1,…,n, n ≥1, if there exist terms t0,…,tn ∈ Λα such
that t≡t0, t′≡tn and ti{mi⇒m′i}≡ti+1, i=0,…n–1, n ≥1.

Let us consider the functional programming language
L1=(M, C1, V, Λ(C1, V)), where C1=M∪(Φ\{car}).

L e m m a 3 . 1 . The function car is not representable in the language L1.
Proof. We will prove this Lemma by contradiction. Let us assume that the

function car is representable in the language L1. That means there exists a program
P1∈℘(L1), (F1∈V[M→M]) such that

1Pf =car. We consider the action of the
interpretation algorithm FS for two cases: FS(P1, F1((T))) and FS(P1, F1((nil))).
FS(P1, F1((T))) and FS(P1, F1((nil))) are definied, because car((T)) and car((nil))
are defined and the interpretation algorithm FS is complete.

If FS(P1, F1((T)))≠T, then
1Pf ≠car , and we will get a contradiction. So, let

us assume that FS(P1, F1((T)))=T . We will show that FS(P1, F1((nil)))=T≠nil, so,

1Pf ≠car and we will get a contradiction again.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

46

In the term F1((T)), which is an input data of the interpretation algorithm
FS, the atom T will be underlined. So, we will consider FS(P1, F1((T))) and
FS(P1, F1((nil))).

We will consider two sequences of terms t0,t1," and t′0,t′1," .
t0≡F1((T)), and for any i ≥0, ti+1 is obtained from ti by applying one step of the
interpretation algorithm FS with input data P1 and ti. Also let t′0≡F1((nil)) and for
any i ≥0, t′i+1 is obtained from t′i by applying one step of the interpretation
algorithm FS with input data P1 and t′i.

There exists n >0 such that tn =T, because FS(P1, F1((T)))=T, and the term
ti+1 is obtained from ti by applying one of the steps of the interpretation algorithm
FS with input data P1 and ti.

By induction it can be proved that for any 0 ≤ I ≤ n, T ∉ C0(ti) and
ti{T⇒ ⇒nil}≡ ti. So, we get FS(P1, F1((nil)))=T≠nil.

This contradiction proves the Lemma.
Let us consider the functional programming language

2 2 2(, , , (,)),L M C V C V= Λ where 2 (\{ }).C M cdr= ∪ Φ
L e m m a 3 . 2 . The function cdr is not representable in the language L2.
Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. Here

we consider the work of the interpretation algorithm FS for two cases:
FS(P2, F1((TT))) and FS(P2, F1((T nil))). By induction it can be proved that for any
0≤ i≤ n, T ∉C0(ti), C0(ti) does not contain a list containing a sublist with head T and
ti{ T⇒nil}≡ t′i. So, we get FS(P2, F1((T nil)))=(T)≠(nil). Consequently, we get a
contradiction, which proves the Lemma.

Definition 3.1. To each m∈M we will correspond a natural number Am
(we will call it the count of atoms of m):

1. If m=⊥, then Am= 0;
2. If m ∈ Atoms, then Am= 1;
3. If m=(m1 … mn), mi ∈ M, i=1,…,n, n ≥0, then

1
...

nm m mA A A= + + .
Let P be a program. Let {m1,…,mn} be the set of constants of order 0 used in

the program P, where mi ∈ M, i=1,…,n, n ≥0. By AP we will devote the following:

{ }1P mmax ,..., 1
nmA A A= + .

Let us consider the functional programming language
3 3 3(, , , (,)),L M C V C V= Λ where 3 (\{ }).C M cons= ∪ Φ

L e m m a 3 . 3 . The function cons is not representable in the language L3.
Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. Here

we consider the work of the interpretation algorithm FS: FS(P3, F1(TT′)), where
. By induction it can be proved that for any

3

()T
PA

T T′ = …��	�

P

0 i n≤ ≤

3

0max{ ()} .m iA C t A∈ ≤ So, we get
3

3 1
1

(, (,)) ()
PA

FS P F T T T T
+

′ ≠ …��	�
 . The contradiction

proves the Lemma.
Let us consider the functional programming language

4 4 4(, , , (,)),L M C V C V= Λ where 4 (\ { })C M atom .= ∪ Φ

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

47

L e m m a 3 . 4 . The function atom is not representable in the language L4.
Proof. This Lemma will be proved by contradiction. Let us assume that the

function atom is representable in the language L4. That means there exists a
program P4∈℘(L4), (F1∈V[M→M]) such that

4Pf =atom. We are interested in the
result of the interpretation algorithm FS in the following two cases: FS(P4, F1(T))
and FS(P4, F1((T))).

FS(P4, F1(T)) and FS(P4, F1((T))) are well definied, because atom(T) and
atom((T)) are defined and the interpretation algorithm FS is complete.

If FS(P4, F1(T))≠T, then
4

,Pf atom≠ and we will get a contradiction. So, let
us assume that FS(P4, F1(T))=T. We will show that FS(P4, F1((T)))≠nil implying

4Pf atom≠ and we will get a contradiction once more. In the term F1(T), which is
an input data of the interpretation algorithm FS, the atom T will be underlined.
Namely, we will consider FS(P4, F1(T)) and FS(P4, F1((T))).

We will consider two sequences of terms t0, t1,… and t′0, t′1,… (in these
terms some subterms of order 0 will be double underlined). t0≡F1((T)), t′0≡F1((T))
and for any i ≥ 0, ti+1 and t′i+1 are correspondingly obtained from ti and t′i in the
following way:

1. If the leftmost redex r of the term ti is a subterm of double underlined
subterm, then t′i+1≡t′i and the term ti+1 is obtained from the term ti by replacing the
redex r with its bundle. In the term ti+1 the subterm corresponding to the double
underlined subterm, which contains the term r, is double underlined. In the term
ti+1 all terms, which are double underlined in the term ti, are double underlined;

2. If the leftmost redex r of the term ti is not a subterm of double underlined
subterm, and if the leftmost redex r′ of the term t′i is a subterm of double
underlined subterm, then ti+1≡ti and the term t′i+1 is obtained from the term t′I by
replacing the redex r′ with its bundle. In the term t′i+1 the subterm corresponding to
the double underlined subterm, which contains the term r′, is double underlined. In
the term t′i+1 all terms, which are double underlined in the term t′i, are double
underlined;

3. If the leftmost redex r of the term ti and the leftmost redex r′ of the term
t′i are not subterms of double underlined subterms, then the terms ti+1 and t′i+1 are
obtained correspondingly from the terms ti and t′i by replacing the redexes
r and r′ with their bundles. Let r be a β-redex λx1 … xk[τ0](τ1 … τk), where

1.k k0, , , , 1,..., ,
i ii i ix V Types iα ατ τ α∈ ∈Λ ∈Λ ∈ = ≥ In the bundles of redexes

the subterms, which correspond to double underlined subterms of τ0, are also
double underlined. If for any i=1,…,k, k ≥ 1, a subterm of the term τi is double
underlined, then if in τ0 a free occurrence of the variable xi is not in double
underlined subterm, then after substitution double underlined subterm of the term ti
is double underlined, otherwise, it is not. Let r be a δ-redex. During the proof of
this Lemma the cases of δ-redexes are considered separately and it is denoted,
which subterms in bundle of δ-redex, are double underlined. Double underlined
subterms of the term t′i+1 are obtained similarly;

4. If ti ∈ NF, FV(ti)∩{F1,…,Fn}≠∅ and in the term ti all free occurrences of
the variables F1,…,Fn stand in double underlined subterms, then

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

48

ti+1≡ti{τ1/F1,…,τn/Fn} and t′i+1≡t′i. In the term ti+1 subterms corresponding to
double underlined subterms of the term are double underlined;

5. If ti∈NF, FV(ti)∩{F1,…,Fn}≠∅, t′i∈NF, FV(t′i)∩{F1,…,Fn}≠∅, and in
the term t′I all free occurrences of the variables F1,…,Fn stand in double underlined
subterms, then t′i+1≡t′i{τ1/F1,…,τn/Fn} and t′i+1≡ti . In the term t′i+1 subterms
corresponding to double underlined subterms of the term t′i are double underlined;

6. If ti∈NF, FV(ti)∩{F1,…,Fn}≠∅ and if in the term ti at least one of free
occurrences of the variables F1,…,Fn is not in double underlined subterm, then
ti+1≡ti{τ1/F1,…,τn/Fn} and t′i+1≡t′i{τ1/F1,…,τn/Fn}. In the terms ti+1 and t′i+1

subterms corresponding to double underlined subterms of the terms ti and t′i are
double underlined.

It is obvious that in the sequences and 0 1, ,t t " 0 1, ,t t′ ′ " there are no infinite
sequences or 1 2i i it t t+ +≡ ≡ ≡" 1 2 (0).i it t iit+ +′ ′ ′≡ ≡ ≡" ≥ For any i > 0 we will
double underlin those subterms of order 0, in the term ti, for which corresponding
subterms in the term are ⊥, and in the term it′ it′ we will double underlin those
subterms of order 0, for which corresponding subterms in the term ti are ⊥. By �τ
we will denote the term obtained from the term τ by replacing all double
underlined subterms of order 0 with ⊥.

Then there exists n>0 such that tn=T, because FS(P4,F1(T))=T and the term
ti+1 is either congruent to the term ti or obtained from ti by applying one of the
steps of the interpretation algorithm FS with input data P4 and ti.

By induction it can be proved that for any 0 , { ()i ii n T Tt t′≤ ≤ ⇒� �≡ . So, we
get FS(P4,F1((T)))=T, FS(P4,F1((T)))=(T) or FS(P4,F1((T)))=⊥, so,
FS(P4,F1((T)))≠nil. So, we get a contradiction, which proves the Lemma.

Let us consider the functional programming language
 where 5 5 5(, , , (,)),L M C V C V= Λ 5 (\{ _ _ }).C M if then else= ∪ Φ

L e m m a 3 . 5 . The function is not representable in the
language L5.

_ _if then else

Proof. Let us assume that the function is representable in the
language L5. It follows that the function g∈[M→M] will be representable in the
language L5 also, where

_ _if then else

, if =
() (), if = , , , ,

, otherwise.

T m T,
g m T m nil m M T nil Atom

⎧
⎪= ∈⎨
⎪⊥⎩

s∈

We will get a desired contradiction by proving that the function g is not
representable in the language L5. The proof is similar to the proof of Lemma 3.1.
Here we consider the action of the interpretation algorithm FS for two cases:
FS(P5,F1(T)) and FS(P5,F1(nil)). By induction it can proved that for any
0 ,i n t T nil nil T t{ , }i i′≤ ≤ ⇒ ⇒ ≡� � . So, we get FS(P5,F1(nil))=T, FS(P5,F1(nil))=nil
or FS(P5,F1(nil))=⊥ and, so, FS(P5,F1(nil))≠(T). So, we get a contradiction, which
proves the Lemma.

Let us consider the functional programming languages

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 2, p. 42–49.

49

6 6 6(, , , (,)),L M C V C V= Λ and 6 6 6(, , , (,)),L M C V C V′ = Λ
where . The language L6 uses more than two atoms, the
language L′6 uses only two atoms.

6 (\{ })C M eq= ∪ Φ

L e m m a 3 . 6 . The function eq is representable in the language and is
not representable in the language .

6L′

6L
The function eq is representable in the language 6L′ , because it is the least

solution of the following equation:
[() (() (()))eqF xy if atom x then if atom y then if x then y else if y then nil elseT else else].λ= ⊥ ⊥

Now let us show that the function eq is not representable in the language L6,
which uses more than two atoms, {a, T, nil}⊂ Atoms.

It we assume that the function eq is representable in the language L6 , then
the function f∈[M →M] will be representable in the language L6 also, where

, if ,
() , if , , , , , ,

, otherwise.

T m a
f m a m T m M a T Atoms a T ni

=⎧
⎪= = ∈ ∈ ≠⎨
⎪⊥⎩

l

To get a contradiction, let us prove that the function f is not representable in
the language L6. The proof is similar to the proof of Lemma 3.1. Now we consider
the work of the interpretation algorithm FS for two cases: FS(P6,F1(a)) and
FS(P6,F1(T)). By induction it can be proved that for any 0 , {i n t a T} .i it′≤ ≤ ⇒ ≡
So, we get 6 1(, ()) ,FS P F T T a= ≠ the contradiction proves the Lemma.

Received 21.02.2012

R E F E R E N C E S

1. Martirosyan G.A. Proceedings of the Conference on Computer Science and Information

Technologies (CSIT-2011). Yer., 2011, p. 370–373.
2. Nigiyan S.A. // Programming and Computer Software, 1992, v. 17, p. 290–297.
3. Nigiyan S.A. // Programming and Computer Software, 1993, v. 19, p. 71–78.
4. Budaghyan L.E. Proceedings of the Conference on Computer Science and Information

Technologies (CSIT-2005). Yer., 2005, p. 16–19.

