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The functional programming language, which uses the set {car, cdr, cons, 
atom, eq, if_then_else} of built-in functions is Turing complete (see [1]). In the 
present paper the minimality of this set of functions is proved. 

Keywords: functional programming language, built-in function, Turing 
completeness, minimality. 

 
1. Introduction. In [1] it is proved that any functional programming 

language, which uses {car, cdr, cons, atom, eq, if_then_else} built-in functions is 
Turing complete. Theorem 3.1 of this paper shows that the set of built-in functions 
Φ={car, cdr, cons, atom, eq, if_then_else} is minimal for functional programming 
languages, which use more than two atoms. Theorem 3.2 shows that the function 
eq is representable in a functional programming language, which uses only two 
atoms and the set   of built-in functions; this set is minimal for functional 
programming languages, which use only two atoms and it is the only proper subset 
of the set , which is minimal for such languages. 

\ { }eqΦ

Φ
2. Definitions and Preliminary Results.  
Definition 2.1. Let M be a partially ordered set, which has a least element ⊥, and 

each element of M is comparable with itself and ⊥ only. Let us define the set Types:  
1. M∈Types;  
2. if α1,…,αn, β∈Types, then the set of all monotonic mappings from 

α1×…×αn  into  β  (denoted by [α1×…×αn→ β]) belongs to Types. 
Definition 2.2. Let α∈Types The order of the type α is a natural number 

(defined as ord(α)), where:  
1. if ,Mα =  then ( ) 0nord a = ; 
2. if 1 1 1[ ... ], ,..., , , then ([ ... ])n n nTypes ordα α α β α α β α α β= × × → ∈ × × → =   

1max( ( ) ( ) ( ) +1).n= ord ,...,ord , ordα α β  
For each Typesα ∈  we  have  an  α   type countable  set of  variables Vα . 

Let α∈Types, ord(α)=n, n≥0. If c∈α, i.e.  c is a constant of type α, then ord(c)=n.    
If  x∈Vα , i.e.  x is a variable of type α,  then  ord(x)=n. 
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Let 
Types

V V
∈

= ∪ α
α

and 
Types

α
α∈

Λ = Λ∪ , where αΛ   is a set of typed λ-terms of 

type α . Let us define the set of all terms Λ. 
1. If  c∈α, α∈Types,  then  c∈Λα. 
2. If  x∈Vα, α∈Types, then  x∈Λα. 
3. If , 1,k k

1[ ... ] 1, , ,..., ≥ then 1( ,..., ) .kt t βτ ∈Λ   , , 1,...,
k i kt aα α β α a Types iτ β× × →∈Λ ∈Λ ∈ =

4. If 1, , ,..., , , , , 1,..., , 1,i k i jx V a a Types i j x x i j k kβ ατ β∈Λ ∈ ∈ ≠ ⇒ ≠ = ≥  then 

11 [ ... ]... [ ]
kkx x α α βλ τ × × →∈Λ . 

The notions of a free and bound occurrence of a variable in a term and the 
notation of a free variable of a term are introduced in a conventional way. The set 
of all free variables of a term t is denoted by FV(t). Terms t1, t2 are said to be 
congruent (which is denoted by 1t t2≡ ), if one term can be obtained from the other 
by renaming bound variables. Congruent terms are considered identical. 

Definition 2.3. A functional program P is a system of equations of the form 
1 1

n n

F

F

=⎧
⎪
⎨
⎪ =⎩

"
τ

τ

,                                                     (1) 

where 1, , , , ( ) { ,..., },
i ii i j i i i nF V i j F F Types FV F Fα ατ Λ α τ∈ ≠ ⇒ ≠ ∈ ∈ ⊂                       

i, j =1,…,n, n ≥ 1, all used constants have an order ≤ 1, constants of order 1 are 
computable functions and α1=[Mk → M], k ≥ 1. In [2] it is proved that any program 
(1) has a least solution. Let <f1,…, fn>∈α1×…×αk is the least solution of the 
program P, then 1pf f=  will be the fixpoint semantics of the program P. 

We will consider functional programming languages (see [3]), which are 
defined with the following quadruple L=(M, C, V, Λ(C, V)), where M is a partially 
ordered set, which has a least element ⊥, and each element of M is comparable 
with itself and ⊥ only, C =M∪Ψ, Ψ  is a set of built-in functions, Λ(C, V)  is the 
set of all terms, which are constructed using constants and variables only from the 
sets C and V. By ( )L℘ we will denote the set of programs, for which Fi∈V, 
τi∈Λ(C, V), i=  1,..., ,n n ≥  1.

Definition 2.4. We will say that the function f∈[M k → M], k ≥ 1, is represen-
table in the language L, if there exists a program P∈℘(L) such that fp=f,  where pf  
is the fixpoint semantics of the program P. 

Definition 2.5. The set of built-in functions Ψ is called minimal for the 
language  L=(M, C, V, Λ(C, V )),  where  C =M∪Ψ,  if  for  any  function  f∈Ψ,             
f is not representable in the language ( , , , ( , )),L M C V C V′ ′ ′= Λ  where 

  ( \ { }).C M′ = ∪ fΨ
The notions of β and δ  reductions are given in [4]. 
We will use the interpretation algorithm FS (full substitution and normal form 

reduction). The completeness of the interpretation algorithm FS follows from [4]. 
We will consider a finite set of atoms, Atoms={a1,…,an}, n≥2, which 

contains at least two elements (T, nil∈Atoms). T and nil correspond to logical true 
and false values respectively. 
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Definition 2.6. We define the set of  S-expressions  as follows: 
1. If t∈Atoms, then t∈S-expressions; 
2. If 1,..., nt t ∈S-expressions (n ≥ 0), then ( 1 nt ... t )∈S-expressions.   
If l=( ), ∈ S-expressions (n ≥ 0), then l is called a list. In the 

case n=0, the list is empty and denoted by nil (which also corresponds to the 
logical false value). In the case n > 0, t1 and ( t ) are correspondingly called 
the head and the tail of the list l. 

1 nt ... t 1,..., nt t

2 n... t

Let M=S-expressions∪{⊥} be a partially ordered set, where ⊥ is the least 
element of M, and each element of M  is comparable with itself and ⊥ only. 

We will consider the following functions, where car, cdr, atom∈[M→M], 
cons, eq∈[M2→M], if then else∈[M3→M], 
 

1 1 1

1 1

2 1

0 0

0

, if ( ... ), , 1,..., , 1,
( )

, otherwise;

, if ( ),
( ) ( ), if ( ), , 1,..., , 1,

, otherwise;

( ), if 
( , )

k

k k i

m m m m m S-expressions i= k k
car m

nil m m m S-expressions,
cdr m m m m m m m S-expressions  i= k k>

m m S
cons m m

= ∈ ≥⎧
= ⎨

⊥⎩
= ∈⎧

⎪= = ∈⎨
⎪⊥⎩

∈

=

" "

0 1 1

1 2 1 2

1 2 1 2 1 2

, ,
( , ), if ( ), , 1,..., , 1,

, otherwise;

, if , , ,, if ,
( ) , if , , ( , ) , if , ,

, otherwise;

k k i

-expressions m nil
m m m m m m m S-expressions i= k k

T m m Atoms m mT m Atoms
atom m nil m Atoms m eq m m nil m m Atoms m m

=⎧
⎪ = ∈⎨
⎪⊥⎩

∈ =∈⎧
⎪= ∉ ∉⊥ = ∈ ≠⎨
⎪⊥⎩

" "

2 1 1

1 2 3 3 1

,
, otherwise;

, if , ,
( , , ) , if ,

, otherwise.

m m S-expressions m nil
if _then_else m m m m m nil

⎧
⎪
⎨
⎪⊥⎩

∈ ≠⎧
⎪= =⎨
⎪⊥⎩

≥  

3. The Main Results. Let Φ = {car, cdr, cons, atom, eq, if_then_else}.  
T h e o r e m  3 . 1 .  The set of built-in functions Φ is minimal for the 

language  L=(M, C, V, Λ(C, V)), where C=M∪Φ, which uses more than two atoms. 
T h e o r e m  3 . 2 .  For the languages, which use only two atoms, we have: 
a)  the function eq is representable in the language L=(M, C, V, Λ(C, V)), 

where C=M∪(Φ\{eq}); 
b)  the set of built-in functions Φ\{eq} is minimal for the language                       

L=(M, C, V, Λ(C, V)), where C=M∪(Φ\{eq}); 
c)  for any function f∈Φ\{eq}, f is not representable in the language                     

L=(M, C, V, Λ(C, V)), where C=M∪(Φ\{f}). 
The proof of Theorems 3.1 and 3.2 will be deduced from Lemmas 3.1–3.6.  
We will consider the following notion of δ-reduction: 
1. <f(m1), m>∈δ , where f∈{car, cdr, atom}, m1,m∈M and f(m1) =m; 
2. <g(m1, m2), m>∈δ , where g∈{cons, eq}, m1, m2, m∈M and g(m1, m2) =m; 
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3. <  if nil then t1 else t2, t2>∈δ , where t1, t2∈ΛM; 
4. <  if m then t1 else t2, t1>∈δ , where m∈M, m≠nil, m≠⊥, t1, t2∈ΛM; 
5. <  if ⊥ then t1 else t2, ⊥>∈δ , where t1, t2∈ΛM. 
In [4] it is given the definition of real notion of δ-reduction. Also from [4] it 

follows that the defined notion of δ-reduction is real. 
To each term t ∈Λα, α∈Types, we will correspond a set C0(t), which 

contains constants of order 0 of the term t: 
1. If t≡c, c∈M, then C0(t)={c}. If t≡c, c∈α,  α∈Types, ord(α)≠0, then 

C0(t)=∅; 
2. If  t≡x, x∈V ,  then C0(t)=∅; 
3. If ≥

11 [ ]( , , ) , , , , , 1, , , 1,
k ik i it t t≡ ∈Λ t Types i k k× × → ∈Λ ∈ =…… …β α α β α∈Λ  τ τ α β

0then  0 0 0
1 1( ( , , )) ( ) ( ) ( );k kC t t C C t C t= ∪ ∪ ∪… …τ τ

4. If 
11 [ ][ ] , , , , , 1, , , 1,

k ik i it x x x V Types i k kα α β β αλ τ τ α β× × →≡ ∈Λ ∈Λ ∈ ∈ = ≥…… …  

 then ., , 1,..., ,i ji j x x i j k≠ ⇒ ⇒ = 0 0
1( … [ ]) (kC x x = C )λ τ τ  

Let us define the change of underlined m by m′ in a term t (denoted by 
t{m⇒m′), where t∈Lα, α∈Types, m, m′∈M: 

1. If t ≡c, c ∈ α, α ∈Types, then  
1.1. If t ≡ m and m is underlined, then m′;  
1.2. If t≡(s1 … sn), si∈M, n ≥0 , then t{m⇒m′}≡(s1{m⇒m′},…, sn{m⇒m′}); 
1.3. Otherwise, t; 
2. If t ≡x,  x∈V,  then t; 
3. If ,t t k

11 [ ]( , , ) Λ , Λ , Λ , , , 1, ,
k ik i it t Types iβ α α β α≡τ τ α β× × →∈ ∈ ∈ ∈…… …=   

1,k ≥  then 1 1( , , ){ } { }( { }, , { });k kt t m m m m t m m t m mτ τ′ ′ ′ ′⇒ ≡ ⇒ ⇒ ⇒… …   
4. If kt x

11 [ ... ] 1... [ ] Λ , Λ , , 1,..., , 1, ,... ,
k ik ix x V i k k a aα α β β αλ τ τ× × →≡ ∈ ∈ ∈ = ≥     

β∈Types,  i≠j⇒ xi≠xj,  i, j=1,…,k, then λx1…xk[τ ]{m⇒m′}≡ λx1…xk[τ {m⇒m′}]. 
We will say that term t′ is obtained from term t(t, t′∈Λα, α∈Types) by 

changing  m1 by m′1,…,mn by m′n (denoted by t{m1⇒m′1,…, mn⇒m′n}≡t′ ), where 
mi, m′i∈M, i≠j⇒mi≠mj,  i, j=1,…,n,  n ≥1,  if  there  exist  terms  t0,…,tn ∈ Λα  such 
that t≡t0, t′≡tn  and  ti{mi⇒m′i}≡ti+1, i=0,…n–1, n ≥1. 

Let us consider the functional programming language  
L1=(M, C1, V, Λ(C1, V)), where C1=M∪(Φ\{car}).  

L e m m a  3 . 1 . The function car is not representable in the language L1. 
Proof. We will prove this Lemma by contradiction. Let us assume that the 

function car is representable in the language L1. That means there exists a program 
P1∈℘(L1), (F1∈V[M→M]) such that 

1Pf =car. We consider the action of the 
interpretation algorithm FS for two cases: FS(P1, F1((T))) and FS(P1, F1((nil))). 
FS(P1, F1((T))) and FS(P1, F1((nil))) are definied, because car((T)) and car((nil)) 
are defined and the interpretation algorithm FS  is complete. 

If FS(P1, F1((T)))≠T, then 
1Pf ≠car , and we will get a contradiction. So, let 

us assume that FS(P1, F1((T)))=T . We will show that FS(P1, F1((nil)))=T≠nil, so,           

1Pf ≠car  and we will get a contradiction again.  
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In the term F1((T)), which is an input data of the interpretation algorithm  
FS, the atom T will be underlined. So, we will consider FS(P1, F1((T))) and                      
FS(P1, F1((nil))). 

We will consider two sequences of terms t0,t1,"  and t′0,t′1," .             
t0≡F1((T)),  and for any i ≥0, ti+1 is obtained from ti  by applying one step of the 
interpretation algorithm FS with input data P1 and ti. Also let t′0≡F1((nil)) and for 
any i ≥0, t′i+1 is obtained from t′i by applying one step of the interpretation 
algorithm FS with input data P1 and t′i. 

There exists n >0 such that tn =T, because FS(P1, F1((T)))=T, and the term 
ti+1 is obtained from  ti  by applying one of the steps of the interpretation algorithm  
FS  with  input  data  P1  and  ti. 

By induction it can be proved that for any 0 ≤ I ≤ n, T ∉ C0(ti) and                   
ti{T⇒ ⇒nil}≡ ti. So, we get FS(P1, F1((nil)))=T≠nil.  

This contradiction proves the Lemma. 
Let us consider the functional programming language 

2 2 2( , , , ( , )),L M C V C V= Λ   where 2 ( \{ }).C M cdr= ∪ Φ  
L e m m a  3 . 2 .  The function cdr is not representable in the language L2. 
Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. Here 

we consider the work of the interpretation algorithm FS for two cases:  
FS(P2, F1((TT))) and FS(P2, F1((T nil))). By induction it can be proved that for any 
0≤ i≤ n, T ∉C0(ti), C0(ti) does not contain a list containing a sublist with head T and 
ti{ T⇒nil}≡ t′i. So, we get FS(P2, F1((T nil)))=(T)≠(nil). Consequently, we get a 
contradiction, which proves the Lemma. 

Definition 3.1. To each m∈M we will correspond a natural number Am           
(we will call it the count of atoms of m): 

1. If m=⊥, then Am= 0; 
2. If m ∈ Atoms, then Am= 1; 
3. If m=(m1 … mn), mi ∈ M, i=1,…,n, n ≥0, then 

1
...

nm m mA A A= + + . 
Let P be a program. Let {m1,…,mn} be the set of constants of order 0 used in 

the program P, where mi ∈ M, i=1,…,n, n ≥0. By AP we will devote the following: 

{ }1P mmax ,..., 1
nmA A A= + . 

Let us consider the functional programming language 
3 3 3( , , , ( , )),L M C V C V= Λ   where 3 ( \{ }).C M cons= ∪ Φ  

L e m m a  3 . 3 .  The function cons is not representable in the language L3. 
Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. Here 

we consider the work of the interpretation algorithm FS: FS(P3, F1(TT′)), where 
. By induction it can be proved that for any  

3

( )T
PA

T T′ = …��	�


P

0 i n≤ ≤

3

0max{ ( )} .m iA C t A∈ ≤ So, we get 
3

3 1
1

( , ( , )) ( )
PA

FS P F T T T T
+

′ ≠ …��	�
 . The contradiction 

proves the Lemma. 
Let us consider the functional programming language  

4 4 4( , , , ( , )),L M C V C V= Λ   where 4 ( \ { })C M atom .= ∪ Φ  
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L e m m a  3 . 4 .  The function atom is not representable in the language L4. 
Proof. This Lemma will be proved by contradiction. Let us assume that the 

function atom is representable in the language L4. That means there exists a 
program P4∈℘(L4), (F1∈V[M→M]) such that 

4Pf =atom. We are interested in the 
result of the interpretation algorithm FS in the following two cases: FS(P4, F1(T)) 
and FS(P4, F1((T))). 

FS(P4, F1(T)) and FS(P4, F1((T))) are well definied, because atom(T) and  
atom((T))  are defined and the interpretation algorithm  FS is complete. 

If FS(P4, F1(T))≠T, then 
4

,Pf atom≠ and we will get a contradiction. So, let 
us assume that FS(P4, F1(T))=T. We will show that FS(P4, F1((T)))≠nil implying  

4Pf atom≠ and we will get a contradiction once more. In the term F1(T), which is 
an input data of the interpretation algorithm FS, the atom T will be underlined. 
Namely, we will consider FS(P4, F1(T)) and FS(P4, F1((T))). 

We will consider two sequences of terms t0, t1,… and t′0, t′1,… (in these 
terms some subterms of order 0 will be double underlined).  t0≡F1((T)), t′0≡F1((T)) 
and for any i ≥ 0, ti+1 and t′i+1  are correspondingly obtained from ti and t′i in the 
following way: 

1. If the leftmost redex r of the term ti is a subterm of double underlined 
subterm, then t′i+1≡t′i and the term ti+1 is obtained from the term ti by replacing the 
redex r with its bundle. In the term ti+1 the subterm corresponding to the double 
underlined subterm, which contains the term r, is double underlined. In the term 
ti+1 all terms, which are double underlined in the term ti, are double underlined; 

2. If the leftmost redex r of the term ti is not a subterm of double underlined 
subterm, and if the leftmost redex r′ of the term t′i is a subterm of double 
underlined subterm, then ti+1≡ti and the term t′i+1 is obtained from the term t′I by 
replacing the redex r′ with its bundle. In the term t′i+1 the subterm corresponding to 
the double underlined subterm, which contains the term r′, is double underlined. In 
the term t′i+1 all terms, which are double underlined in the term t′i, are double 
underlined; 

3. If the leftmost redex r of the term ti  and the leftmost redex r′  of the term 
t′i  are not subterms of double underlined subterms, then the terms ti+1 and t′i+1 are 
obtained correspondingly from the terms ti and t′i by replacing the redexes                    
r and  r′  with  their  bundles. Let  r  be  a  β-redex λx1 … xk[τ0](τ1 … τk), where 

1.k k0, , , , 1,..., ,
i ii i ix V Types iα ατ τ α∈ ∈Λ ∈Λ ∈ = ≥  In the bundles of redexes 

the subterms, which correspond to double underlined subterms of τ0, are also 
double underlined. If for any i=1,…,k, k ≥ 1, a subterm of the term τi is double 
underlined, then if in τ0 a free occurrence of the variable xi is not in double 
underlined subterm, then after substitution double underlined subterm of the term ti  
is double underlined, otherwise, it is not. Let r be a δ-redex. During the proof of 
this Lemma the cases of δ-redexes are considered separately and it is denoted, 
which subterms in bundle of δ-redex, are double underlined. Double underlined 
subterms of the term t′i+1 are obtained similarly; 

4. If ti ∈ NF, FV(ti)∩{F1,…,Fn}≠∅ and in the term ti all free occurrences of 
the variables F1,…,Fn stand in double underlined subterms, then 
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ti+1≡ti{τ1/F1,…,τn/Fn} and t′i+1≡t′i. In the term ti+1 subterms corresponding to 
double underlined subterms of the term are double underlined; 

5. If ti∈NF, FV(ti)∩{F1,…,Fn}≠∅, t′i∈NF, FV(t′i)∩{F1,…,Fn}≠∅, and in 
the term t′I all free occurrences of the variables F1,…,Fn stand in double underlined 
subterms, then t′i+1≡t′i{τ1/F1,…,τn/Fn}  and t′i+1≡ti . In the term  t′i+1 subterms 
corresponding to double underlined subterms of the term t′i are double underlined; 

6. If ti∈NF, FV(ti)∩{F1,…,Fn}≠∅ and if in the term ti at least one of free 
occurrences of the variables F1,…,Fn is not in double underlined subterm, then 
ti+1≡ti{τ1/F1,…,τn/Fn} and t′i+1≡t′i{τ1/F1,…,τn/Fn}. In the terms ti+1 and t′i+1 

subterms corresponding to double underlined subterms of the terms  ti and t′i are 
double underlined. 

It is obvious that in the sequences  and 0 1, ,t t " 0 1, ,t t′ ′ "  there are no infinite 
sequences or 1 2i i it t t+ +≡ ≡ ≡" 1 2 ( 0).i it t iit+ +′ ′ ′≡ ≡ ≡" ≥  For any i > 0 we will 
double underlin those subterms of order 0, in the term ti, for which corresponding 
subterms in the term   are ⊥, and in the term it′ it′ we will double underlin those 
subterms of order 0, for which corresponding subterms in the term ti are ⊥. By �τ  
we will denote the term obtained from the term τ by replacing all double 
underlined subterms of order 0 with ⊥. 

Then there exists n>0 such that tn=T, because FS(P4,F1(T))=T and the term 
ti+1 is either congruent to the term ti or obtained from ti  by applying one of the 
steps of the interpretation algorithm FS  with input data P4  and ti.  

By induction it can be proved that for any 0 , { ( )i ii n T Tt t′≤ ≤ ⇒� �≡ . So, we 
get FS(P4,F1((T)))=T, FS(P4,F1((T)))=(T) or FS(P4,F1((T)))=⊥, so, 
FS(P4,F1((T)))≠nil. So, we get a contradiction, which proves the Lemma. 

Let us consider the functional programming language 
  where 5 5 5( , , , ( , )),L M C V C V= Λ 5 ( \{ _ _ }).C M if then else= ∪ Φ   

L e m m a  3 . 5 .  The function  is not representable in the 
language L5. 

_ _if then else

Proof. Let us assume that the function  is representable in the 
language L5. It follows that the function g∈[M→M] will be representable in the 
language L5 also, where 

_ _if then else

, if =
( ) ( ), if = , , , ,

, otherwise.

T m T,
g m T m nil m M T nil Atom

⎧
⎪= ∈⎨
⎪⊥⎩

s∈  

We will get a desired contradiction by proving that the function g is not 
representable in the language L5. The proof is similar to the proof of Lemma 3.1. 
Here we consider the action of the interpretation algorithm  FS for two cases: 
FS(P5,F1(T)) and FS(P5,F1(nil)). By induction it can proved that for any 
0 ,i n t T nil nil T t{ , }i i′≤ ≤ ⇒ ⇒ ≡� � . So, we get FS(P5,F1(nil))=T,  FS(P5,F1(nil))=nil 
or FS(P5,F1(nil))=⊥ and, so,  FS(P5,F1(nil))≠(T). So, we get a contradiction, which 
proves the Lemma. 

Let us consider the functional programming languages   
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6 6 6( , , , ( , )),L M C V C V= Λ   and  6 6 6( , , , ( , )),L M C V C V′ = Λ  
where .   The language L6 uses more than two atoms, the 
language  L′6  uses only two atoms. 

6 ( \{ })C M eq= ∪ Φ

L e m m a  3 . 6 .  The function eq is representable in the language  and is 
not representable in the language . 

6L′

6L
The function eq is representable in the language 6L′ , because it is the least 

solution of the following equation:  
[ ( ) ( ( ) ( ( )) )eqF xy if atom x then if atom y then if x then y else if y then nil elseT else else ].λ= ⊥ ⊥                                           

Now let us show that the function eq  is not representable in the language L6, 
which uses more than two atoms, {a, T, nil}⊂ Atoms. 

It we assume that the function eq is representable in the language L6 , then 
the function f∈[M →M]  will be representable in the language L6 also, where  

, if ,
( ) , if , , , , , ,

, otherwise.

T m a
f m a m T m M a T Atoms a T ni

=⎧
⎪= = ∈ ∈ ≠⎨
⎪⊥⎩

l  

To get a contradiction, let us prove that the function f is not representable in 
the language L6. The proof is similar to the proof of Lemma 3.1. Now we consider 
the work of the interpretation algorithm FS for two cases: FS(P6,F1(a)) and 
FS(P6,F1(T)). By induction it can be proved that for any 0 , {i n t a T} .i it′≤ ≤ ⇒ ≡  
So, we get 6 1( , ( )) ,FS P F T T a= ≠  the contradiction proves the Lemma. 
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