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We consider the degenerate nonself-adjoint differential equation of fourth order 
( ) ,Lu t u au pu qu fα ′′ ′′ ′′′ ′′≡ + − + =  where (0; ), 0 2,t b α∈ ≤ ≤ 1, , ,a p qα ≠  are 

the constant numbers and 20, 0, (0, ).a p f L b≠ > ∈  We prove that the                   
statement of the Dirichlet problem for the above equation depends on the sign of 
the number a  (Keldysh Teorem). 
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1. Statement of the Problem. In the present paper we observe the Dirichlet 

problem for the following degenerate differential equation 

( ) ,Lu t u au pu qu fα ′′ ′′ ′′′ ′′≡ + − + =  

where (0, ), 0 2, 1, , ,t b a p qα α∈ ≤ ≤ ≠  are the constant numbers and 0,a ≠  

2 .0, (0, )p f L b> ∈  

We are interested in the nature of boundary conditions with respect to t,              
ensuring that the equation has unique solution for any 2 .(0, )f L b∈  

In the article [1] (there a  or p  equal to zero) has been proven that this con-
ditions depend on the sign of a . This type of phenomenon was first noted by 
Keldysh in [2] for the degenerate elliptic equation of second order. 

Dirichlet problem for the degenerate equation of second order have been 
considered in [3, 4] and for the degenerate equations of the fourth order in [5–7].  
In this article we consider the case, when 0, 0,a p≠ >  but with the restriction 
0 2, 0.aα≤ ≤ ≠  

2. Dirichlet Problem. 
2.1. The Space αW .2   Let 2[0, ]C b  be the set of twice continuously differen-

tiable functions ( ),u t  defined on [0, ]b  and satisfying the conditions 
(0) (0) ( ) ( ) 0.u u u b u b′ ′= = = =                                 (2.1) 
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Let  2 , ,W  0α α ≥   be the completion of 2[0, ]C b  in the norm 

    2
2 2

0
| ( ) |

b

Wu t u t dt
α

α ′′= ∫                                        (2.2) 

with the corresponding scalar product { , } ( , )u v t u vα ′′ ′′= , where ( , )⋅ ⋅  is the scalar 
product in 2 (0, ).L b  

It is known (see, for instance, [8]) that the elements of 2Wα  are continuously 
differentiable functions on [ , ]bε  for every 0 bε< < , whose first derivatives are 
absolutely continuous and ( ) ( ) 0.u b u b′= =  Therefore, it is sufficient to explore 
properties of the elements from  2Wα  for small t . 

Proposition 2.1. For every 2 close to 0u W tα∈ = we have following estimates 

2 2
2 22 3 2 1

1 2| ( ) | , 1, 3; | ( ) | , 1.W Wu t C t u u t C t u
α α

α αα α− −′≤ ≠ ≤ ≠          (2.3) 

For 3α =  the factor 3t α−  should be replaced by | ln |;t  for 1α =  the factor 1t α−    

by | ln |t  and the factor 3t α−  by  2 | ln | .t t  
It follows from relations (2.3) that for  1α <  (weak degeneracy) the boundary 

conditions (0) (0) 0u u′= =  are “retained”, while for 1 3α≤ <  (strong degeneracy) 
only the first condition is “retained”. For 3α ≥  both (0)u and (0)u′  in general may 

be infinite. For example, if ( ) ( )u t t tβϕ= , where 2( ) [0, ],t C bϕ ∈  ( ) ( ) 0b bϕ ϕ′= =  

and (0) 0ϕ ≠ , then it is easy to check that for 3α >  and (3 ) 0
2
α β−

< <  the func-

tion  ( )u t  belongs to 2Wα ,  but  0tu
=

and 0tu
=

′  do not exist [9]. 

Proposition 2.2. For every 1 4α≤ ≤  we have a continuous embedding 

 2
2 (0, ),W L bα →                                             (2.4) 

which for 1 4α≤ <  is compact. 
Note that for the proof of the embedding (2.4) for 1 4α≤ ≤ , we use the first 

inequality of (2.3). For the case 4α = , using the Hardy inequality (see [10]), we 

obtain the exact estimate  2
2 4

2 2
(0, ) (0, )

16 .
9L b W bu u≤  

It follows from Proposition 2.2, that for 1 4α≤ ≤  we have the inequality 

2
2 (0, ) .L b Wu c u

α
≤                                         (2.5) 

Note that the embedding (2.4) for 4α =  is not compact and for 4α >  fails. 
If we want to work within the space 2 (0, )L b , we assume that the condition   

0 4α≤ ≤  is fulfilled. Moreover, we restrict ourselves to the case 0 2α≤ ≤  to have 
2 (0, )u L b′∈  [1]. 
2.2. Non-Self-Adjoint Equation of the First Type. In this section we               

consider Drichlet problem for the equation 
( ) ,Lu t u au pu qu fα ′′ ′′ ′′′ ′′≡ + − + =                                    (2.6) 
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where (0, ), 0 2, 1, , ,t b a p qα α∈ ≤ ≤ ≠  are the constant numbers and 0,a >   
0,p > 2 .(0, )f L b∈  

Let ( ) 0h tψ ≡  for 0 t h≤ ≤  and 
3 2( ) (5 2 ), 2 ,( )

1, 2 .h
h t h h t h t ht

h t b
ψ

−⎧ − − < <⎪=⎨
< ≤⎪⎩

 

Let ( ) ( ) ( ).hu t u t tψ=  Obviously, the function ( )hu t  belongs to the space 2.Wα   

We can prove that for every function 2u Wα∈  and 1, 3α α≠ ≠  the norm 
2|| ||h Wu u
α

−  tends to zero by  h → 0 [1]. 

Definition 2.1. The function 2u Wα∈  is called a generalized solution of the 

Dirichlet problem for the Eq. (2.6), if for every 2 , 0 ,W < h < bαθ ∈  holds the  
equality 

( , ) ( , ) ( , ) ( , ) ( , )h h h h ht u a u p u q u fα θ θ θ θ θ′′ ′′ ′′ ′ ′ ′− + + = .                 (2.7) 
Note that in Definition 2.1 we cannot write ( , )u θ′′ ′  instead of ( , ),hu θ′′ ′  since 

it in general does not exist. 
Now consider a particular case of the Eq. (2.6) for 0q =  

( ) .Mu t u au pu fα ′′ ′′ ′′′ ′′≡ + − =                                  (2.8) 
T h e o r e m  2 . 1 .  The generalized solution of the Dirichlet problem for the 

Eq. (2.8) exists  and  is unique  for  every 2 (0, ), 0 2 and 1.f L b α α∈ ≤ ≤ ≠    
Proof.  
Existence.  Let 1 2 .α< ≤  Denoting u v′ =  and integrating the Eq.  (2.8), we 

get ( ) ( ) ,t v av pv F tα ′ ′ ′+ − =  where 
0

( ) ( ) .
t

F t f dτ τ= ∫   

Here is very important that for 0 2α≤ ≤  the function u v′ =  belong to 

2 (0, ).L b  Now we can use the fact that this equation has unique solution in 2Wα  

(completion of 1[0, ]C b  in the norm 2
2 2

0
| ( ) |

b

Wu t u t dt
α

α ′= ∫ ). Moreover, the value 

(0)v  is finite and can be defined by ( )F t , but cannot be given arbitrarily [3]. Since 
2u Wα∈  and 0 2α≤ ≤  consequently we have (0) ( ) 0,u u b= =  thus, the equation 

u v′ =  has unique solution. Now it is easy to verify that this function satisfies to the 
equality (2.7) (for 0q = ) for every  2Wαθ ∈ . 

Uniqueness. Let 1 2.α≤ ≤  Suppose that 2u Wα∈  satisfies to the equality 

(2.7) (for 0q = ) for every 2Wαθ ∈  and 0f = . We know that (0) 0u =  and (0)u′   
is finite. If we put uθ =  and pass to the limit (which exists) when 0h → , we            

obtain that 2
2 2 2

0
( , ) ( , ) ( , ) | (0) | | ( ) | 0.

2

b

h h h W
at u u a u v p u u u u p u t dt

α

α ′′ ′′ ′′ ′ ′ ′ ′ ′− + → + + =∫  

Hence, we conclude that 0u = .                                                                                 � 
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Definition 2.2. We say that the function 2u Wα∈  belongs to the domain of  
definition ( )D M  of the operator M, if for some 2 (0, )f L b∈  is valid the equality 
(2.7) (for 0q = ) for every 2 .Wαθ ∈  In this case we write .Mu f=  

Thus, we get an operator 2 2: (0, ) (0, ).M L b L b→  
Proposition 2.3. The inverse operator 1

2 2: (0, ) (0, )M L b L b− →  is compact 
for 0 2, 1.α α≤ ≤ ≠  

Proof. As consequence of Theorem 2.1, we get that inverse operator 1M −  is 
defined on whole 2 (0, ).L b  At the same time, from these considerations it follows 
that for ( )u D M∈  we have 

2 2

0
( , ) { , } | (0) | | ( ) | .

2

baf u u u u p u t dtα ′ ′= + + ∫  

Now, using the inequalities of Cauchy and (2.5), we conclude that 
2

2 (0, )|| || .L bWu Mu
α
≤  

Since the embedding (2.4) is compact, therefore, we get that the operator 
1M −  is compact.                                                                                                        � 

Similarly as in the proof of Proposition 2.3, it is easy to verify that the spec-
trum ( )Mσ of the operator  M  lies in the right half-plane (see [1, 3]).  

We can now consider the general equation, since the number q−  can be consid-
ered as a spectral parameter for the operator M . Hence, if ( )q Mσ− ∉  (in particular 

0q > ), we can state that the Eq. (2.6) is uniquely solvable for every 2 (0, ).f L b∈  
2.3. Nonself-Adjoint Equation of the Second Type. In this section we            

consider Dirichlet problem for the equation 

2( ) , 0, 0, (0, ).Lu t v av pv qv g a p g L bα ′′ ′′ ′′′ ′′≡ − − + = > > ∈             (2.9) 
First we investigate a particular case of the Eq. (2.9) for 0q =  

( ) .Nv t v av pv gα ′′ ′′ ′′′ ′′≡ − − =                                 (2.10) 
Definition 2.3. We call 2 (0, )v L b∈  the generalized solution of the             

Eq.  (2.10), if for every ( )u D M∈  we have 
( , ) ( , ).Mu v u g=                                             (2.11) 

Definition 2.3, as usual, generates an operator 2 2: (0, ) (0, ).N L b L b→  
T h e o r e m  2 . 2 . A generalized solution for the Eq. (2.10) exists and is 

unique for every 2 (0, )g L b∈ . The generalized solution fulfills to the Conditions 2.1. 
Proof. The generalized solution for the Eq. (2.10) is unique, since the operator 

N is defined as adjoint to the operator M  and the image ( )R M of the operator M 
coincides with the 2 (0, ).L b  The existence follows from the boundedness of the    
inverse operator 1M −  [11, 12]. As in the proof of Theorem 2.1, we denote v w′ = , 
and after integrating of the Eq. (2.10) we get ( ) ( ),t w aw pw G tα ′ ′ ′− − =  where 

0
( ) ( ) .

t
G t g d Cτ τ= +∫  We know [3] that this equation has unique generalized solution 
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2w Wα∈  (see Section 2.2), which fulfills (in contrast to the Eq. (2.8)) to the condi-
tions (0) ( ) 0.w w b= =  Now we can uniquely solve the equation v w′ =  using the 
conditions (0) ( ) 0.v v b= =  To prove that the defined in this way function ( )v t  is 
the desired solution, we take an element ( ) , .u D M Mu f∈ =  Then, for 0h > we 
have ( , ) ( , ) ( , ) ( , ).h h h ht u v a u v p u v f vα ′′ ′′ ′′ ′ ′ ′− + =  Passing to the limit in this equality 
when 0h →  and integrating by parts, we get ( , ) ( , ),u Nv f v=  which is equivalent 
to the Eq. (2.11). 

Note that the inverse operator 1N − also will be compact as adjoint to the 
operator 1M −  and, therefore, the spectrum ( )Nσ of the operator N  is in the right 
half-plane. 

Now we can observe the general Eq. (2.9) regarding the number p−  as spectral 
parameter for the operator N . As a result we get, that if ( )p Nσ− ∉ , then the    
Eq. (2.9) has the unique solution, which fulfills the conditions (2.1). 
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