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Denote the space of all bivariate polynomials of total degree ≤ n by Πn. We study
the n-independence of points sets on quartics, i.e. on algebraic curves of degree 4.
The n-independent sets X are characterized by the fact that the dimension of the space
PX := {p ∈ Πn : p(x) = 0,∀x ∈ X} equals dimΠn−#X. Next, polynomial interpolation
of degree n is solvable only with these sets. Also the n-independent sets are exactly the
subsets of Πn-poised sets. In this paper we characterize all n-independent sets on quartics.
We also characterize the set of points that are n-complete in quartics, i.e. the subsets X of
quartic δ , having the property p ∈Πn, p(x) = 0 ∀x ∈ X⇒ p = δq, q ∈Πn−4.
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1. Independent Point Sets. Denote by Πn = Πn(R2) the space of bivariate algebraic
polynomials of total degree not exceeding n:

Πn =

{
p(x,y) = ∑

i+ j≤n
ai jxiy j, ai j ∈ k

}
,

where k = R or C. We have that

N := Nn := dimΠn =

(
n+2

2

)
.

Let us fix a set of points
Xs := {(x1,y1), . . . ,(xs,ys)}.

The problem of finding p ∈Πn satisfying the conditions

p(xi,yi) = ci, i = 1,2, ...,s, (1)

is called interpolation problem and denoted briefly by (Πn,Xs). The polynomial p is called a
data interpolating or just interpolating polynomial.

Definition 1.1. The interpolation problem (Πn,Xs) is called solvable, if for any set of
values {c1,c2, . . . ,cs} there exists a polynomial p ∈Πn satisfying the conditions (1).

We call a polynomial p ∈ Πn fundamental or n-fundamental for the point A = (xk,yk),
and denote it by p∗k := p∗A := p∗A,Xs,n, if

p(xi,yi) = δki, i = 1,2, ...,s,
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where δ is the Kronecker symbol. Evidently a polynomial (from Πn) vanishing at all points,
but A is a constant times the fundamental polynomial. Sometimes it is convenient for us to
call such polynomials fundamental too.

Definition 1.2. A set X is called Πn-independent, or briefly n-independent, if all its
fundamental polynomials p∗A ∈Πn, A ∈ X, exist.

Since the fundamental polynomials are linearly independent, we get that the following
is a necessary condition for n-independence: s≤ N. In the case of independence we have the
following Lagrange formula for a polynomial satisfying interpolating conditions (1):

p =
s

∑
i=1

ci p∗i .

Next, we bring the first characterization of n-independence:
Proposition 1.1. A set X is n-independent, if and only if the interpolation problem

(Πn,X) is solvable.
Indeed, one side here follows from the Lagrange formula and another side follows

from the fact that the fundamental polynomials are solutions of particular interpolation
problems. �

Now let us discuss the poisedness.
Definition 1.3. A set Xs is called Πn-poised, or briefly n-poised, if for any set of values

{c1,c2, . . . ,cs} there exists a unique polynomial p ∈ Πn satisfying the conditions (1). Evi-
dently, a necessary condition for the poisedness s = N. Denote by p|X the restriction of p on
X. By using an elementary linear algebra fact, we get

Proposition 1.2. The interpolation problem (Πn,XN) is not poised, if and only if

∃p ∈Πn p 6= 0, p|X = 0.

Or, in other words, the interpolation problem (Πn,XN) is not poised, if and only if there
is an algebraic curve of degree ≤ n passing through all the points of XN .

The following proposition characterizes n-independent sets as subsets of n-poised sets
(see, e.g., [1], Lemma 2.1).

Proposition 1.3. Any n-independent set Xs with s < N can be enlarged to an n-poised
set. Furthermore, a set XN is n-poised, if and only if it is n-independent.

Now let us consider the following important polynomial class

Pn,X := {p ∈Πn : p|X = 0}.
The third characterization of n-independence is the following (see, e.g., [1], Eq. (2.3))

Proposition 1.4. A set X is n-independent, if and only if the following equality holds

dimPn,X = dimΠn−#X.

Next we bring the characterization of n-independence of Xs in terms of linear indepen-
dence of some s vectors in kN . Let associate any point (x,y) with its N-vector:

[x,y]N :=
(
1,x,y, . . . ,xn,xn−1y, · · · ,yn) .

The Vandermonde matrix Vn(Xs) for the point set Xs and Πn is an s×N-matrix, whose
rows are the N-vectors of the points of Xs :

Vn(Xs) =


1 x1 y1 · · · xn

1 xn−1
1 y1 · · · yn

1
1 x2 y2 · · · xn

2 xn−1
2 y2 · · · yn

2
...

...
...

1 xs ys · · · xn
s xn−1

s ys · · · yn
s

 .

We have the following (see, e.g., [1], Section 2.1)
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Proposition 1.5. A set X is n-independent, if and only if the set of N-vectors associated
with the points of X are linearly independent or, in other words, the Vandermonde matrix
Vn(X) has full row rank.

Let us define the Hilbert function of X : Hn(X) as the cardinality of a maximal
n-independent subset of X, i.e.

Hn(X) := max{#Y : Y⊂ X, Y is n-independent} .
We get readily from Proposition 1.4 that for any set of points X

dimPn,X = dimΠn−Hn(X). (2)

We use the same letter, say p, to denote a polynomial p ∈ Πn and the curve, for which
p(x,y) = 0 is an equation. More precisely, suppose p is a polynomial of degree n without
multiple factors. Then the curve of degree n defined by the equation p(x,y) = 0 we
call also p.

Now let us consider n-completeness of a point set.
Definition 1.4. Let q be an algebraic curve of degree k without multiple components. A

set X is called n-complete in q, if

p ∈Πn, p|X = 0⇒ p = qr, r ∈Πn−k. (3)

Let us define for k ≤ n

d(n,k) := dimΠn−dimΠn−k =
1
2

k (2n+3−k) .

Let q be an algebraic curve of degree k ≤ n. Consider the following polynomial class

Pn,q := {p ∈Πn : p = qr, r ∈Πn−k}.
Obviously dimΠn,q = dimΠn−k.

It is well-known, that if q has no multiple component, then

p ∈Πn, p|q = 0⇒ p = qr, r ∈Πn−k.

Notice that
Pn,q ⊂ Pn,X , if X⊂ q. (4)

Therefore, the following holds for n-completeness of X⊂ q :

Pn,q = Pn,X , if and only if dimPn,q = dimPn,X. (5)

The latter condition, in view of (2), means that Hn(X) = d(n,k). This implies (see, [2],
Proposition 3.1.)

Proposition 1.6. Let q be an algebraic curve of degree k ≤ n without multiple compo-
nents. Then the following hold.

i) If a subset X of q is n-independent, then #X≤ d(n,k).
ii) If a subset X of q is n-complete, then #X≥ d(n,k).
iii) A subset X of q containing d(n,k) points is n-independent, if and only if it is

n-complete in q.
iv) A subset of q containing more than nk points is n-complete in q, if q is irreducible.
Note that to prove iv) we use the fact that two curves of degrees n and k, without a com-

mon component, intersect at most at nk distinct points. Since any subset of an n-independent
set is also n-independent, this proposition implies that in any n-poised set, at most d(n,k)
points can belong to a curve of degree k.

2. Some Results on Independent Sets. By conic, cubic and quartic we mean algebraic
curves of degree 2,3 and 4, respectively. Reducible conic is a pair of lines, while reducible
cubic is a triple of lines or a pair of a line and an irreducible conic. We denote by α,β ,γ,δ
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lines, conics, cubics, quartics and the corresponding polynomials, respectively. The following
is an evident continuity fact.

L e m m a 2 . 1 . Suppose that a set of points Xs is n-independent. Then there exists a
positive number ε > 0 such that any set X′s is n-independent, if the distance between xi and x′i
is less than ε, i = 1, . . . ,s.

In the next section we will use the following well-known result (see, e.g., [1], Proposi-
tion 4.1 and Theorem 4.4; [3], Theorems CB1-CB5).

T h e o r e m 2 . 1 . (Ceyley-Bacharach) Suppose that the curves p and q of degree m
and n, respectively, intersect at exactly mn distinct points, i.e. #Z = mn with Z = p∩ q. Set
k0 := n+m−3. Then the following hold.

i) Any polynomial from Πk0 vanishing at mn−1 intersection points vanishes also at the
remaining intersection point.

ii) A subset U ⊂ Z, with #U =Hk(Z), is k-independent, if and only if the set Uc := Z\U
is (k0− k)-independent.

From now on, till the end of this section, we bring a relevant material from [4], which
will be used in the sequel.

In the next lemma and proposition we have two sets X,Y, where X is n-independent
and Y satisfies some conditions guaranteeing that the union set Z= X∪Y is n-independent.

L e m m a 2 . 2 . Suppose that a set of points X is n-independent and the points of
another set Y have n-fundamental polynomials with respect to the set Z=X∪Y. Then the set
Z is n-independent.

Proposition 2.1. Suppose that a set X ⊂ q with q ∈ Πk is n-independent, k ≤ n, and
another set Y with Y∩q = /0 is (n−k)-independent. Then the set Z=X∪Y is n-independent.
The following proposition (see [3], Proposition 1; [5], Theorem 9) we will use frequently in
the next sections.

Proposition 2.2. A set of ≤ 2n+ 1 points on the plane is n-independent, if and only if
no n+2 of them are collinear.

From here we readily get the following two corollaries:
Corollary 2.1. The following statements hold true.
i) Any set of ≤ n+1 points is n-independent.
ii) Any set of ≥ n+2 points located on a line is n-dependent.
iii) Any set of n+1 points located on a line is n-complete there.
Corollary 2.2. The following statements hold true for conics.
i) Any set of ≤ 2n+1 points on an irreducible conic is n-independent.
ii) Any set of ≥ 2n+2 points on a conic is n-dependent.
iii) Any set of 2n+1 points located on an irreducible conic β is n-complete there.
Finally let us bring a result from [4] concerning the cubics.
Proposition 2.3. Let γ be any cubic. Then a set X of ≤ 3n points located on γ is

n-dependent, if and only if one of the following holds:
i) a line component of γ contains n+2 points of X, if γ is reducible;
ii) a conic component (possibly pair of lines) of γ contains 2n+ 2 points of X, if γ is

reducible;
iii) #X= 3n and there is a curve σ ∈Πn such that γ ∩σ = X.

3. Independence of Sets on Quartics. We characterize independence of sets of points
located on a quartic in the following steps.

Step 1. Independence of Sets of 4n–1 Points. Let us start by stating a special case of
Proposition 1.6, i) when k = 4 and d(n,4) = 4n−2.

• Any set of ≥ 4n−1 points located on a quartic is n-dependent.
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Step 2. Independence of Sets of 4n–2 Points. By using Proposition 1.6, iii), we get a
characterization for n-independence of sets of 4n−2 points:

• A set of 4n−2 points located on a quartic is n-independent, if and only if it is
n-complete there.

Step 3. Independence of Sets of 4n–3 Points. We characterize independence of 4n−3
points located on a quartic in the following

Proposition 3.1. Let δ be any irreducible quartic. Assume that a set X of 4n−3 points
is located on δ and the points Ai ∈ δ \X, i = 1,2,3, are collinear. Then the set X is
n-independent, if and only if a set X∪{Ai} of 4n−2 points is n-independent, where i= 1,2,3.

Proof. Suppose that a set X∪{Ai} is n-independent, where 1 ≤ i≤ 3. Then, of course,
X is n-independent. Now suppose by way of contradiction that the set X is n-independent,
but each of the sets X∪{Ai}, i = 1,2,3, is n-dependent. This, in view of Lemma 2.2, means
that

p ∈Πn, p|X = 0⇒ p(Ai) = 0, i = 1,2,3.

Then, suppose that q ∈ Πn,q|X = 0. Let us prove that q and δ have a common com-
ponent. Assume by way of contradiction that q and δ intersect only at finitely many points.
Then we have that

q∩δ = X∪{A1,A2,A3}.

Now, by using Theorem 2.1, ii), with the curves q,δ , k = 1 and U = {A1,A2,A3}, we get that
Uc = X is n-dependent (k0−1 = n+4−3−1 = n), which is a contradiction.

Thus, q and δ have a common component. Next, since δ is irreducible, we get that q is
divisible by δ . Therefore, we may conclude that X is n-complete in δ . This is a contradiction
in view of Proposition 1.6, ii). �

Step 4. Independence of Sets of 4n-4 Points. We characterize independence of any
4n−4 points located on a quartic in the following two propositions.

Proposition 3.2. Let δ be a quartic. Suppose that a set X of 4n−4 points located on δ

is (n−1)-complete in δ :

p ∈Πn−1, p|X = 0⇒ p = δq, q ∈Πn−5. (6)

Suppose also that no line component of δ contains n+2 points of X, if δ is reducible with a
line component. Then X is n-independent.

Proof. Consider the following polynomial space:

Pn−5,δ = {δq, q ∈Πn−5} .
We get from (6) that Pn−1,X ⊂ Pn−5,δ . Therefore,

dimPn−1,X ≤ dimPn−5,δ = dimΠn−5.

Now, by using (2), we get

dimΠn−1−Hn−1(X)≤ dimΠn−5.

Therefore, we conclude that Hn−1(X)≥ 4n−6.
Thus, we get that there is an (n− 1)-independent subset Y of X of cardinality 4n− 6.

Now consider the line α passing through the two points of X\Y. According to the condition
of the Proposition, α passes through at most n+ 1 points of X. Now to complete the proof,
we apply Proposition 2.1. Indeed, then we get that X is n-independent. �

Proposition 3.3. Let δ be a quartic. Suppose that a set X of 4n−4 points located on δ is
n-independent, and no cubic component of δ contains 3n points of X, if δ is reducible with a
cubic component. Then X is (n−1)-complete in δ .

Proof. Let us add two points A and B to X in δ , so that the resulted set X′′ of 4n− 2
points is n-independent. Assume that the line passing through A and B, which we denote by
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α ′′, does not coincide with any line component of the quartic δ . Now suppose p ∈Πn−1 and
p|X = 0. Consider the polynomial q = α ′′p. Then we have that q vanishes at all points of X′′.
Therefore, according to Proposition 1.6, iii), we have that

q = α
′′p = δ r, where r ∈Πn−4.

Since α ′′ is not a component of δ , we conclude from here that it is a component of r, i.e.
r = α ′′s, s ∈Πn−5. Thus, we conclude that p = δ s, where r ∈Πn−5 or, in other words, X is
(n−1)-complete in δ .

Now to complete the proof it suffices to show that one can chose the two points such that
the line α ′′ is not a component of the quartic δ . Suppose that the first point A is added to X in
δ , so that the resulted set X′ of 4n−3 points is n-independent. If A belongs to a component,
which is not a line, then we are done, since then the line α ′′ is not a component of δ .

Thus, suppose that A belongs to a line component α of δ . Let δ = γα, where γ ∈ Π3.
We may assume, in view of Lemma 2.1, that A ∈ α\γ. Indeed, if A is an intersection point
of α and γ, then by a small shift within γ we can remove A from α. It remains to show that
one can chose the second point B from the cubic γ. Suppose it is not possible. Then, in view
of Lemma 2.2, we have that

p ∈Πn, p|X′ = 0⇒ p = γr, r ∈Πn−3. (7)

Now notice that there are ≥ n−3 points of X on α\γ, since, otherwise, we would have ≥ 3n
points of X on cubic component γ of δ . Also the point A was chosen from there. Hence, we
get from (7) that r vanishes at these n−2 points, therefore, r = αs. Thus, we conclude that

p ∈Πn, p|X′ = 0⇒ p = γαs = δ s, s ∈Πn−4. (8)

This, in view of Proposition 1.6, is a contradiction. �
Finally let us turn to
Step 5. Independence of Sets of 4n-5 Points. We characterize independence of any

≤ 4n−5 points located on an irreducible quartic in the following
Proposition 3.4. Let δ be any irreducible quartic. Then any set X of ≤ 4n− 5 points

located on δ is n-independent.
Proof. Assume by way of contradiction that X, with #X= 4n−5, is n-dependent. Then

for any A ∈ δ\X we have that the set X′ = X∪{A} is n-dependent, too. The set X′ is not
(n−1)-complete, i.e. there is a polynomial q ∈Πn−1,q|δ 6= 0, such that q|X′ = 0, in view of
Proposition 3.3. Thus, in view of the Bezout Theorem, we get

q∩δ = X′.

Therefore, by using Theorem 2.1 (the Ceyley-Bacharach Theorem), we get

p ∈Πn, p|X = 0⇒ p|X′ = 0 (n = (n−1)+4−3).

Therefore, we have p ∈Πn, p|X = 0⇒ p(A) = 0. Since A was arbitrary point in A ∈ δ\X we
conclude that X is n-complete in δ . This, in view of Proposition 1.6, is a contradiction. �

4. Completeness of Sets on Quartics. We will characterize the completeness of any set
of points located on a quartic in the following steps.

Step 1. Completeness of Sets of 4n–3 Points. Let us start by stating a special case
of Proposition 1.6, ii) when k=4. We have that d(n,4) = 4n− 2. Therefore, we have the
following:

• Any set of ≤ 4n−3 points located on a quartic is not n-complete there.
Step 2. Completeness of Sets of 4n–2 Points. A characterization for n-completeness

of sets of 4n−2 points located on a quartic is stated in Step 2 of Section 3.
Step 3. Completeness of Sets of 4n–1 or 4n Points. We characterize completeness of

sets of 4n−1 and 4n points located on quartics in the following two propositions, respectively.
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Proposition 4.1. Let δ be any quartic. Then any set X of 4n− 1 points located on δ is
n-complete there, if and only if there is a point A∈X such that the set X\A is complete there.

Proof. Suppose by way of contradiction that the set X of 4n− 1 points located on δ is
n-complete there, while for any point A ∈ X the set X \A is not complete. This means that
for any A ∈X there is a polynomial pA ∈Πn such that pA|δ 6= 0 and pA|X\A = 0. Now notice
that pA(A) 6= 0, since otherwise the set X will be not complete in δ . Thus, we get that pA is a
fundamental polynomial for A∈X. Since A is any point from X, we get that X n-independent
which, in view of Step 1 of Section 3, is a contradiction. �

Proposition 4.2. Let δ be any quartic. Then any set X of 4n points located on δ is
n-complete there, if and only if there is a point A ∈ X such that the set X \A is complete
there.

The proof is identical with the previous one.
Finally let us turn to
Step 4. Completeness of Sets of 4n+1 Points.

Proposition 1.6, iv) with k=4 gives a characterization for n-completeness of sets of 4n+1
points located on a quartic. Namely, we have the following:
• Any set of 4n+1 points located on an irreducible quartic is n-complete there.

The first author is supported by State Committee of Science of RA, grant # 11-1A290.

Received 20.12.2012

R E F E R E N C E S

1. Hakopian H., Jetter K., Zimmermann G. Vandermonde Matrices for Intersection Points of
Curves. // Jaen J. Approx., 2009, v. 1, № 1, p. 67–81.

2. Rafayelyan L. Poised Nodes Set Constructions on Algebraic Curves. // East J. on Approx., 2011,
v. 17, № 3, p. 285–298.

3. Eisenbud D., Green M., Harris J. Cayley-Bacharach Theorems and Conjectures. // Bull. Amer.
Math. Soc. (N.S.), 1996, v. 33, № 3, p. 295–324.

4. Hakopian H., Malinyan A. Characterization of n-Independent Sets with no More than 3n Points.
// Jaen J. Approx., 2012, v. 4, № 2, p. 121–136.

5. Hakopian H. On a Class of Hermite Interpolation Problems. // Adv. Comput. Math., 2000, v. 12,
p. 303–309.


