Physical and Mathematical Sciences

2013, № 1, p. 6–12

Mathematics

ON n-INDEPENDENT SETS LOCATED ON QUARTICS

H. A. HAKOPIAN *1, A. R. MALINYAN **2

¹ Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia

Denote the space of all bivariate polynomials of total degree $\leq n$ by Π_n . We study the n-independence of points sets on quartics, i.e. on algebraic curves of degree 4. The n-independent sets \mathcal{X} are characterized by the fact that the dimension of the space $\mathcal{P}_{\mathcal{X}} := \{p \in \Pi_n : p(x) = 0, \forall x \in \mathcal{X}\}$ equals $\dim \Pi_n - \#\mathcal{X}$. Next, polynomial interpolation of degree n is solvable only with these sets. Also the n-independent sets are exactly the subsets of Π_n -poised sets. In this paper we characterize all n-independent sets on quartics. We also characterize the set of points that are n-complete in quartics, i.e. the subsets \mathcal{X} of quartic δ , having the property $p \in \Pi_n$, $p(x) = 0 \ \forall x \in \mathcal{X} \Rightarrow p = \delta q$, $q \in \Pi_{n-4}$.

MSC2010: 41A10,41A63; 14H50.

Keywords: algebraic curve, fundamental polynomial, *n*-independent point set, *n*-complete point set.

1. Independent Point Sets. Denote by $\Pi_n = \Pi_n(\mathbb{R}^2)$ the space of bivariate algebraic polynomials of total degree not exceeding n:

$$\Pi_n = \left\{ p(x, y) = \sum_{i+j \le n} a_{ij} x^i y^j, \ a_{ij} \in k \right\},\,$$

where $k = \mathbb{R}$ or \mathbb{C} . We have that

$$N:=N_n:=\dim \Pi_n=\binom{n+2}{2}.$$

Let us fix a set of points

$$\mathfrak{X}_s := \{(x_1, y_1), \dots, (x_s, y_s)\}.$$

The problem of finding $p \in \Pi_n$ satisfying the conditions

$$p(x_i, y_i) = c_i, \quad i = 1, 2, ..., s,$$
 (1)

is called interpolation problem and denoted briefly by (Π_n, \mathcal{X}_s) . The polynomial p is called a data interpolating or just interpolating polynomial.

Definition 1.1. The interpolation problem (Π_n, \mathcal{X}_s) is called solvable, if for any set of values $\{c_1, c_2, \dots, c_s\}$ there exists a polynomial $p \in \Pi_n$ satisfying the conditions (1).

We call a polynomial $p \in \Pi_n$ fundamental or *n*-fundamental for the point $A = (x_k, y_k)$, and denote it by $p_k^* := p_A^* := p_{A, X_s, n}^*$, if

$$p(x_i, y_i) = \delta_{ki}, \quad i = 1, 2, ..., s,$$

** E-mail: argishti.malinyan@gmail.com

² Chair of Mathematics and Mathematical Modelling RA(S)U, Armenia

^{*} E-mail: hakop@ysu.am

where δ is the Kronecker symbol. Evidently a polynomial (from Π_n) vanishing at all points, but A is a constant times the fundamental polynomial. Sometimes it is convenient for us to call such polynomials fundamental too.

Definition 1.2. A set \mathfrak{X} is called Π_n -independent, or briefly n-independent, if all its fundamental polynomials $p_A^* \in \Pi_n$, $A \in \mathfrak{X}$, exist.

Since the fundamental polynomials are linearly independent, we get that the following is a necessary condition for n-independence: $s \le N$. In the case of independence we have the following Lagrange formula for a polynomial satisfying interpolating conditions (1):

$$p = \sum_{i=1}^{s} c_i p_i^*.$$

Next, we bring the first characterization of n-independence:

Proposition 1.1. A set \mathcal{X} is *n*-independent, if and only if the interpolation problem (Π_n, \mathcal{X}) is solvable.

Indeed, one side here follows from the Lagrange formula and another side follows from the fact that the fundamental polynomials are solutions of particular interpolation problems. \Box

Now let us discuss the poisedness.

Definition 1.3. A set \mathcal{X}_s is called Π_n -poised, or briefly n-poised, if for any set of values $\{c_1, c_2, \ldots, c_s\}$ there exists a unique polynomial $p \in \Pi_n$ satisfying the conditions (1). Evidently, a necessary condition for the poisedness s = N. Denote by $p|_{\mathcal{X}}$ the restriction of p on \mathcal{X} . By using an elementary linear algebra fact, we get

Proposition 1.2. The interpolation problem (Π_n, \mathcal{X}_N) is not poised, if and only if

$$\exists p \in \Pi_n \quad p \neq 0, \quad p|_{\mathcal{X}} = 0.$$

Or, in other words, the interpolation problem (Π_n, \mathcal{X}_N) is not poised, if and only if there is an algebraic curve of degree $\leq n$ passing through all the points of \mathcal{X}_N .

The following proposition characterizes n-independent sets as subsets of n-poised sets (see, e.g., [1], Lemma 2.1).

Proposition 1.3. Any *n*-independent set X_s with s < N can be enlarged to an *n*-poised set. Furthermore, a set X_N is *n*-poised, if and only if it is *n*-independent.

Now let us consider the following important polynomial class

$$\mathcal{P}_{n,\chi} := \{ p \in \Pi_n : p | \chi = 0 \}.$$

The third characterization of n-independence is the following (see, e.g., [1], Eq. (2.3))

Proposition 1.4. A set X is n-independent, if and only if the following equality holds

$$\dim \mathcal{P}_{n,\chi} = \dim \Pi_n - \# \chi.$$

Next we bring the characterization of *n*-independence of \mathfrak{X}_s in terms of linear independence of some *s* vectors in k^N . Let associate any point (x,y) with its *N*-vector:

$$[x,y]_N := (1,x,y,\ldots,x^n,x^{n-1}y,\cdots,y^n).$$

The *Vandermonde matrix* $V_n(\mathfrak{X}_s)$ for the point set \mathfrak{X}_s and Π_n is an $s \times N$ -matrix, whose rows are the N-vectors of the points of \mathfrak{X}_s :

$$V_n(\mathcal{X}_s) = \begin{pmatrix} 1 & x_1 & y_1 & \cdots & x_1^n & x_1^{n-1}y_1 & \cdots & y_1^n \\ 1 & x_2 & y_2 & \cdots & x_2^n & x_2^{n-1}y_2 & \cdots & y_2^n \\ \vdots & & & \vdots & & \vdots \\ 1 & x_s & y_s & \cdots & x_s^n & x_s^{n-1}y_s & \cdots & y_s^n \end{pmatrix}.$$

We have the following (see, e.g., [1], Section 2.1)

Proposition 1.5. A set \mathcal{X} is *n*-independent, if and only if the set of *N*-vectors associated with the points of \mathcal{X} are linearly independent or, in other words, the *Vandermonde matrix* $V_n(\mathcal{X})$ has full row rank.

Let us define the Hilbert function of X: $\mathcal{H}_n(X)$ as the cardinality of a maximal n-independent subset of X, i.e.

$$\mathcal{H}_n(\mathfrak{X}) := \max \{ \# \mathcal{Y} : \mathcal{Y} \subset \mathfrak{X}, \mathcal{Y} \text{ is } n\text{-independent} \}.$$

We get readily from Proposition 1.4 that for any set of points X

$$\dim \mathcal{P}_{n,\mathcal{X}} = \dim \Pi_n - \mathcal{H}_n(\mathcal{X}). \tag{2}$$

We use the same letter, say p, to denote a polynomial $p \in \Pi_n$ and the curve, for which p(x,y)=0 is an equation. More precisely, suppose p is a polynomial of degree n without multiple factors. Then the curve of degree n defined by the equation p(x,y)=0 we call also p.

Now let us consider *n*-completeness of a point set.

Definition 1.4. Let q be an algebraic curve of degree k without multiple components. A set \mathfrak{X} is called n-complete in q, if

$$p \in \Pi_n, \ p|_{\mathcal{X}} = 0 \Rightarrow p = qr, \ r \in \Pi_{n-k}.$$
 (3)

Let us define for $k \le n$

$$d(n,k) := \dim \Pi_n - \dim \Pi_{n-k} = \frac{1}{2} k (2n+3-k).$$

Let q be an algebraic curve of degree $k \le n$. Consider the following polynomial class

$$\mathcal{P}_{n,q} := \{ p \in \Pi_n : p = qr, r \in \Pi_{n-k} \}.$$

Obviously $\dim \Pi_{n,q} = \dim \Pi_{n-k}$.

It is well-known, that if q has no multiple component, then

$$p \in \Pi_n, \ p|_q = 0 \Rightarrow p = qr, \ r \in \Pi_{n-k}.$$

Notice that

$$\mathcal{P}_{n,q} \subset \mathcal{P}_{n,\chi}$$
, if $\mathcal{X} \subset q$. (4)

Therefore, the following holds for *n*-completeness of $\mathfrak{X} \subset q$:

$$\mathcal{P}_{n,q} = \mathcal{P}_{n,\chi}$$
, if and only if $\dim \mathcal{P}_{n,q} = \dim \mathcal{P}_{n,\chi}$. (5)

The latter condition, in view of (2), means that $\mathcal{H}_n(\mathcal{X}) = d(n,k)$. This implies (see, [2], Proposition 3.1.)

Proposition 1.6. Let q be an algebraic curve of degree $k \le n$ without multiple components. Then the following hold.

- i) If a subset X of q is n-independent, then $\#X \leq d(n,k)$.
- ii) If a subset \mathcal{X} of q is n-complete, then $\#\mathcal{X} \ge d(n,k)$.
- iii) A subset \mathcal{X} of q containing d(n,k) points is n-independent, if and only if it is n-complete in q.
 - iv) A subset of q containing more than nk points is n-complete in q, if q is irreducible.

Note that to prove iv) we use the fact that two curves of degrees n and k, without a common component, intersect at most at nk distinct points. Since any subset of an n-independent set is also n-independent, this proposition implies that in any n-poised set, at most d(n,k) points can belong to a curve of degree k.

2. Some Results on Independent Sets. By conic, cubic and quartic we mean algebraic curves of degree 2,3 and 4, respectively. Reducible conic is a pair of lines, while reducible cubic is a triple of lines or a pair of a line and an irreducible conic. We denote by $\alpha, \beta, \gamma, \delta$

lines, conics, cubics, quartics and the corresponding polynomials, respectively. The following is an evident continuity fact.

Lem ma 2.1. Suppose that a set of points \mathcal{X}_s is *n*-independent. Then there exists a positive number $\varepsilon > 0$ such that any set \mathcal{X}'_s is *n*-independent, if the distance between x_i and x'_i is less than ε , $i = 1, \ldots, s$.

In the next section we will use the following well-known result (see, e.g., [1], Proposition 4.1 and Theorem 4.4; [3], Theorems CB1-CB5).

- **Theorem 2.1.** (Ceyley-Bacharach) Suppose that the curves p and q of degree m and n, respectively, intersect at exactly mn distinct points, i.e. #Z = mn with $Z = p \cap q$. Set $k_0 := n + m 3$. Then the following hold.
- i) Any polynomial from Π_{k_0} vanishing at mn-1 intersection points vanishes also at the remaining intersection point.
- ii) A subset $U \subset Z$, with $\#U = \mathcal{H}_k(Z)$, is k-independent, if and only if the set $U^c := Z \setminus U$ is $(k_0 k)$ -independent.

From now on, till the end of this section, we bring a relevant material from [4], which will be used in the sequel.

In the next lemma and proposition we have two sets \mathcal{X}, \mathcal{Y} , where \mathcal{X} is *n*-independent and \mathcal{Y} satisfies some conditions guaranteeing that the union set $\mathcal{Z} = \mathcal{X} \cup \mathcal{Y}$ is *n*-independent.

Lemma 2.2. Suppose that a set of points \mathcal{X} is *n*-independent and the points of another set \mathcal{Y} have *n*-fundamental polynomials with respect to the set $\mathcal{Z} = \mathcal{X} \cup \mathcal{Y}$. Then the set \mathcal{Z} is *n*-independent.

Proposition 2.1. Suppose that a set $\mathcal{X} \subset q$ with $q \in \Pi_k$ is *n*-independent, $k \leq n$, and another set \mathcal{Y} with $\mathcal{Y} \cap q = \emptyset$ is (n-k)-independent. Then the set $\mathcal{Z} = \mathcal{X} \cup \mathcal{Y}$ is *n*-independent. The following proposition (see [3], Proposition 1; [5], Theorem 9) we will use frequently in the next sections.

Proposition 2.2. A set of $\leq 2n+1$ points on the plane is *n*-independent, if and only if no n+2 of them are collinear.

From here we readily get the following two corollaries:

Corollary 2.1. The following statements hold true.

- i) Any set of $\leq n+1$ points is *n*-independent.
- ii) Any set of $\geq n+2$ points located on a line is *n*-dependent.
- iii) Any set of n + 1 points located on a line is n-complete there.

Corollary 2.2. The following statements hold true for conics.

- i) Any set of $\leq 2n+1$ points on an irreducible conic is *n*-independent.
- ii) Any set of $\geq 2n+2$ points on a conic is *n*-dependent.
- iii) Any set of 2n + 1 points located on an irreducible conic β is n-complete there.

Finally let us bring a result from [4] concerning the cubics.

Proposition 2.3. Let γ be any cubic. Then a set \mathcal{X} of $\leq 3n$ points located on γ is n-dependent, if and only if one of the following holds:

- i) a line component of γ contains n+2 points of \mathcal{X} , if γ is reducible;
- ii) a conic component (possibly pair of lines) of γ contains 2n+2 points of \mathcal{X} , if γ is reducible;
 - iii) # $\mathfrak{X} = 3n$ and there is a curve $\sigma \in \Pi_n$ such that $\gamma \cap \sigma = \mathfrak{X}$.
- **3. Independence of Sets on Quartics.** We characterize independence of sets of points located on a quartic in the following steps.
- **Step 1. Independence of Sets of** 4n**-1 Points.** Let us start by stating a special case of Proposition 1.6, i) when k = 4 and d(n,4) = 4n 2.
 - Any set of $\geq 4n-1$ points located on a quartic is *n*-dependent.

- Step 2. Independence of Sets of 4n-2 Points. By using Proposition 1.6, iii), we get a characterization for n-independence of sets of 4n-2 points:
- \bullet A set of 4n-2 points located on a quartic is *n*-independent, if and only if it is *n*-complete there.
- Step 3. Independence of Sets of 4n-3 Points. We characterize independence of 4n-3 points located on a quartic in the following

Proposition 3.1. Let δ be any irreducible quartic. Assume that a set \mathcal{X} of 4n-3 points is located on δ and the points $A_i \in \delta \setminus \mathcal{X}$, i=1,2,3, are collinear. Then the set \mathcal{X} is n-independent, if and only if a set $\mathcal{X} \cup \{A_i\}$ of 4n-2 points is n-independent, where i=1,2,3.

Proof. Suppose that a set $\mathcal{X} \cup \{A_i\}$ is *n*-independent, where $1 \leq i \leq 3$. Then, of course, \mathcal{X} is *n*-independent. Now suppose by way of contradiction that the set \mathcal{X} is *n*-independent, but each of the sets $\mathcal{X} \cup \{A_i\}$, i = 1, 2, 3, is *n*-dependent. This, in view of Lemma 2.2, means that

$$p \in \Pi_n, \ p|_{\mathcal{X}} = 0 \Rightarrow p(A_i) = 0, \ i = 1, 2, 3.$$

Then, suppose that $q \in \Pi_n, q|_{\mathfrak{X}} = 0$. Let us prove that q and δ have a common component. Assume by way of contradiction that q and δ intersect only at finitely many points. Then we have that

$$q \cap \delta = \mathfrak{X} \cup \{A_1, A_2, A_3\}.$$

Now, by using Theorem 2.1, ii), with the curves q, δ , k = 1 and $U = \{A_1, A_2, A_3\}$, we get that $U^c = \mathcal{X}$ is n-dependent $(k_0 - 1 = n + 4 - 3 - 1 = n)$, which is a contradiction.

Thus, q and δ have a common component. Next, since δ is irreducible, we get that q is divisible by δ . Therefore, we may conclude that \mathfrak{X} is n-complete in δ . This is a contradiction in view of Proposition 1.6, ii).

Step 4. Independence of Sets of 4n-4 Points. We characterize independence of any 4n-4 points located on a quartic in the following two propositions.

Proposition 3.2. Let δ be a quartic. Suppose that a set \mathcal{X} of 4n-4 points located on δ is (n-1)-complete in δ :

$$p \in \Pi_{n-1}, \ p|_{\mathcal{X}} = 0 \Rightarrow p = \delta q, \ q \in \Pi_{n-5}.$$
 (6)

Suppose also that no line component of δ contains n+2 points of \mathcal{X} , if δ is reducible with a line component. Then \mathcal{X} is n-independent.

Proof. Consider the following polynomial space:

$$\mathcal{P}_{n-5,\delta} = \{ \delta q, \ q \in \Pi_{n-5} \}.$$

We get from (6) that $\mathcal{P}_{n-1,\chi} \subset \mathcal{P}_{n-5,\delta}$. Therefore,

$$\dim \mathcal{P}_{n-1,\chi} \leq \dim \mathcal{P}_{n-5,\delta} = \dim \Pi_{n-5}$$
.

Now, by using (2), we get

$$\dim \Pi_{n-1} - \mathcal{H}_{n-1}(\mathcal{X}) \leq \dim \Pi_{n-5}.$$

Therefore, we conclude that $\mathcal{H}_{n-1}(\mathfrak{X}) \geq 4n-6$.

Thus, we get that there is an (n-1)-independent subset \mathcal{Y} of \mathcal{X} of cardinality 4n-6. Now consider the line α passing through the two points of $\mathcal{X} \setminus \mathcal{Y}$. According to the condition of the Proposition, α passes through at most n+1 points of \mathcal{X} . Now to complete the proof, we apply Proposition 2.1. Indeed, then we get that \mathcal{X} is n-independent. \square

Proposition 3.3. Let δ be a quartic. Suppose that a set \mathcal{X} of 4n-4 points located on δ is n-independent, and no cubic component of δ contains 3n points of \mathcal{X} , if δ is reducible with a cubic component. Then \mathcal{X} is (n-1)-complete in δ .

Proof. Let us add two points A and B to \mathfrak{X} in δ , so that the resulted set \mathfrak{X}'' of 4n-2 points is *n*-independent. Assume that the line passing through A and B, which we denote by

 α'' , does not coincide with any line component of the quartic δ . Now suppose $p \in \Pi_{n-1}$ and $p|_{\mathcal{X}} = 0$. Consider the polynomial $q = \alpha''p$. Then we have that q vanishes at all points of \mathcal{X}'' . Therefore, according to Proposition 1.6, iii), we have that

$$q = \alpha'' p = \delta r$$
, where $r \in \Pi_{n-4}$.

Since α'' is not a component of δ , we conclude from here that it is a component of r, i.e. $r = \alpha'' s$, $s \in \Pi_{n-5}$. Thus, we conclude that $p = \delta s$, where $r \in \Pi_{n-5}$ or, in other words, \mathfrak{X} is (n-1)-complete in δ .

Now to complete the proof it suffices to show that one can chose the two points such that the line α'' is not a component of the quartic δ . Suppose that the first point A is added to \mathcal{X} in δ , so that the resulted set \mathcal{X}' of 4n-3 points is n-independent. If A belongs to a component, which is not a line, then we are done, since then the line α'' is not a component of δ .

Thus, suppose that A belongs to a line component α of δ . Let $\delta = \gamma \alpha$, where $\gamma \in \Pi_3$. We may assume, in view of Lemma 2.1, that $A \in \alpha \setminus \gamma$. Indeed, if A is an intersection point of α and γ , then by a small shift within γ we can remove A from α . It remains to show that one can chose the second point B from the cubic γ . Suppose it is not possible. Then, in view of Lemma 2.2, we have that

$$p \in \Pi_n, \ p|_{\mathfrak{X}'} = 0 \Rightarrow p = \gamma r, \ r \in \Pi_{n-3}.$$
 (7)

Now notice that there are $\geq n-3$ points of \mathcal{X} on $\alpha \setminus \gamma$, since, otherwise, we would have $\geq 3n$ points of \mathcal{X} on cubic component γ of δ . Also the point A was chosen from there. Hence, we get from (7) that r vanishes at these n-2 points, therefore, $r=\alpha s$. Thus, we conclude that

$$p \in \Pi_n, \ p|_{\mathfrak{X}'} = 0 \Rightarrow p = \gamma \alpha s = \delta s, \ s \in \Pi_{n-4}.$$
 (8)

This, in view of Proposition 1.6, is a contradiction.

Finally let us turn to

Step 5. Independence of Sets of 4n-5 Points. We characterize independence of any $\leq 4n-5$ points located on an irreducible quartic in the following

Proposition 3.4. Let δ be any irreducible quartic. Then any set \mathfrak{X} of $\leq 4n-5$ points located on δ is n-independent.

Proof. Assume by way of contradiction that \mathcal{X} , with $\#\mathcal{X} = 4n - 5$, is n-dependent. Then for any $A \in \delta \setminus \mathcal{X}$ we have that the set $\mathcal{X}' = \mathcal{X} \cup \{A\}$ is n-dependent, too. The set \mathcal{X}' is not (n-1)-complete, i.e. there is a polynomial $q \in \Pi_{n-1}, q|_{\delta} \neq 0$, such that $q|_{\mathcal{X}'} = 0$, in view of Proposition 3.3. Thus, in view of the Bezout Theorem, we get

$$g \cap \delta = \mathfrak{X}'$$
.

Therefore, by using Theorem 2.1 (the Ceyley-Bacharach Theorem), we get

$$p \in \Pi_n, p|_{\mathcal{X}} = 0 \Rightarrow p|_{\mathcal{X}'} = 0 \quad (n = (n-1) + 4 - 3).$$

Therefore, we have $p \in \Pi_n$, $p|_{\mathcal{X}} = 0 \Rightarrow p(A) = 0$. Since A was arbitrary point in $A \in \delta \setminus \mathcal{X}$ we conclude that \mathcal{X} is n-complete in δ . This, in view of Proposition 1.6, is a contradiction. \square

- **4. Completeness of Sets on Quartics.** We will characterize the completeness of any set of points located on a quartic in the following steps.
- **Step 1. Completeness of Sets of** 4n**-3 Points.** Let us start by stating a special case of Proposition 1.6, ii) when k**-4**. We have that d(n,4) = 4n 2. Therefore, we have the following:
 - Any set of $\leq 4n-3$ points located on a quartic is not *n*-complete there.
- Step 2. Completeness of Sets of 4n-2 Points. A characterization for n-completeness of sets of 4n-2 points located on a quartic is stated in Step 2 of Section 3.
- Step 3. Completeness of Sets of 4n-1 or 4n Points. We characterize completeness of sets of 4n-1 and 4n points located on quartics in the following two propositions, respectively.

Proposition 4.1. Let δ be any quartic. Then any set \mathcal{X} of 4n-1 points located on δ is n-complete there, if and only if there is a point $A \in \mathcal{X}$ such that the set $\mathcal{X} \setminus A$ is complete there.

Proof. Suppose by way of contradiction that the set \mathcal{X} of 4n-1 points located on δ is n-complete there, while for any point $A \in \mathcal{X}$ the set $\mathcal{X} \setminus A$ is not complete. This means that for any $A \in \mathcal{X}$ there is a polynomial $p_A \in \Pi_n$ such that $p_A|_{\delta} \neq 0$ and $p_A|_{\mathcal{X} \setminus A} = 0$. Now notice that $p_A(A) \neq 0$, since otherwise the set \mathcal{X} will be not complete in δ . Thus, we get that p_A is a fundamental polynomial for $A \in \mathcal{X}$. Since A is any point from \mathcal{X} , we get that \mathcal{X} n-independent which, in view of Step 1 of Section 3, is a contradiction.

Proposition 4.2. Let δ be any quartic. Then any set \mathcal{X} of 4n points located on δ is n-complete there, if and only if there is a point $A \in \mathcal{X}$ such that the set $\mathcal{X} \setminus A$ is complete there.

The proof is identical with the previous one.

Finally let us turn to

Step 4. Completeness of Sets of 4n+1 Points.

Proposition 1.6, iv) with k=4 gives a characterization for n-completeness of sets of 4n+1 points located on a quartic. Namely, we have the following:

• Any set of 4n + 1 points located on an irreducible quartic is *n*-complete there.

The first author is supported by State Committee of Science of RA, grant #11-1A290.

Received 20.12.2012

REFERENCES

- 1. **Hakopian H., Jetter K., Zimmermann G.** Vandermonde Matrices for Intersection Points of Curves. // Jaen J. Approx., 2009, v. 1, № 1, p. 67–81.
- 2. **Rafayelyan L.** Poised Nodes Set Constructions on Algebraic Curves. // East J. on Approx., 2011, v. 17, № 3, p. 285–298.
- 3. **Eisenbud D., Green M., Harris J.** Cayley-Bacharach Theorems and Conjectures. // Bull. Amer. Math. Soc. (N.S.), 1996, v. 33, № 3, p. 295–324.
- 4. **Hakopian H., Malinyan A.** Characterization of *n*-Independent Sets with no More than 3*n* Points. // Jaen J. Approx., 2012, v. 4, № 2, p. 121–136.
- 5. **Hakopian H.** On a Class of Hermite Interpolation Problems. // Adv. Comput. Math., 2000, v. 12, p. 303–309.