PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2013, Ne 3, p. 45-48
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SURFACE WAVES IN PIEZOACTIVE ELASTIC SYTEM OF A LAYER
ON A SEMI-SPACE

M. V. BELUBEKYAN", V.M. BELUBEKYAN""
Institute of Mechanics of NAS Republic of Armenia

A structure consisting of a layer and a semi-space, made of elastic
piezoelectric materials, is considered. Unlike the known approaches to the
problem, it is assumed that the layer and the semi-space can freely slide relative to
each other. The problem of Gulyayev—Bleustein type surface wave propagation is
investigated for four different variants of boundary conditions at the external
surface of the layer. It is established, that in one case there exist two Gulyayev—
Bleustein type waves, in two other cases there exists one such wave for each case,
and in the last case there is no surface wave of mentioned type.
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In numerous known publications the propagation of surface waves at the
boundary between an elastic layer and semi-space is considered subject to the
condition of full (rigid) contact at the interface. A review of these publications is
provided in [1]. Of recent publications in this field it is worthwhile to mention
[2, 3]. In the present paper the problems of surface wave propagation are
considered in case when conditions of sliding contact are established at the
boundary between the layer and the semi-space.

1. Let the semi-space in the Cartesian coordinate system be defined by the
domain —0<x <00, 0<y<ow, —co<z<oo, and the layer by —o<x<oo, —h<y<0,
—o0 < z <o domain. The layer and the semi-space are made of the same piezoelastic
material of 6mm class. Whence, all quantities relating to the semi-space are denoted
by index k=1, while all those relating to the layer are denoted by index k=2.
Equations of propagation of purely shear electro-elastic waves are well known [4, 5]:

a’Aw, =0*w, /ot*, Ay, =0, k=1,2, (1.1)

where
@’ =Chlp, Coy=Cy(1+2), x=65/6Cy, w, =0, —esw /s, (1.2)
here C,, is the shear modulus, p is the mass density of material, & is the dielectric
permittivity, e is the piezoelectric modulus, y is the electro-mechanical coupling
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coefficient, ¢, are electric potentials in the semi-space and in the layer respectively.
At the boundary between the layer and the semi-space the conditions of sliding
contact are imposed: o3y =033 =0; @, =¢,; D" = D{®, when y=0. We will
write this equations, taking into account the functional equations from [5, 6], as

6‘44%+e]561//k =0, @, =0, %:%’ when y=0. (1.3)
oy oy oy

oy
The following four types of boundary conditions are imposed at the external
boundary of the layer:

a) O'g) =0, ¢, =0; b) O'g) =0, D;z) =0;

) w,=0, ¢, =0; d) w,=0, D =0.

The sought for solution of Egs. (1.1) shall satisfy the interface boundary
conditions (1.3), any of the versions of boundary conditions (1.4) and at the same
time the following attenuation conditions:

lim w; =0, lijnw, =0. (1.5)
v 0

yA)EX)
The existence of non-trivial solutions to any of mentioned problems would
mean the existence of the Gulyayev—Bleustein type surface (or localized) wave [8].
Solutions of Egs. (1.1) are sought in the form:
wi = fr (V) expi(ot = px), y; =g, (y)expi(wt - px). (1.6)
Substituting (1.6) into (1.1) a set of ordinary differential equations with
respect to functions f,, g, is obtained. General solutions of these equations

(1.4)

satisfying the attenuation conditions (1.5) are
fi=4e ", f,=4,e" +Be ",
g =Ce”, g,=Ce” +De”,
where 4, 4,, B,, C|, C,, D, are arbitrary constants and

a=(1-n", n=w’(pa)”. (1.8)
Thus, the problem is reduced to determination of parameter 1 characterizing

(1.7)

the square of phase velocity subject to the attenuation condition
0<n<l. (1.9)
According to (1.2), (1.6) and (1.7), the potential functions are determined by
the following expressions:
o = (g +ese” fi)expi(ot — px). (1.10)
Substituting (1.6) and (1.10) into boundary conditions at the interface
between the layer and the semi-space, with due regard for (1.7) gives:

0‘644‘41 +e5C, =0, aé44 (4, —B,)+e5(C, —D,) =0,
C +ese ' 4 =C,+D,+ee ' (4, +B,), (1.11)
C, =D, -C,.

The obtained set (1.11) is a system of four algebraic linear equations with

respect to six unknown constants that need to be completed by adding to it the
conditions at the external boundary y=—k of layer. However, it is convenient to

express four unknown constants in terms of C, and D, as follows:
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4 =e]5(6'44a)“(C2 -D,), G, =D,-G,,
A, = —se]_;cz, B, = —ge]_; ( —Ot_])(O)Cz —615(C44a)_]D2'

In (1.12) the quantity y, is determined by electromechanical coupling coefficient:

(1.12)

Xo =e]25(sC~'44)"] =y(1+x)"". The use of convenience expressions (1.12) will

significantly simplify the solution of the problem.
2. Now let consider the first case, when the external boundary of the layer is
free of mechanical stresses and is electrically earthed; so, the boundary conditions are:

C,.(0w, /0v) +¢,5(0y, /0v)=0, @, =0, when y=—h. 2.1)
Substituting w,, ¥, from (1.6) and ¢, from (1.10) with due regard for (1.7)
into boundary conditions (2.1), we get equations with respect to the four unknown
constants 4,, B,, C,, D, :
aC,y(Ae ™" — Bye™") +e,5(Cye " — Dye?™) =0,
es(Aye " + B,e®"" )+ £(Cre " + Dye) = 0.
Using (1.12), the system (2.2) yields to two homogeneous equations with
respect to unknown constants C,, D, . Based on the condition that the determinant of

(2.2)

this system is zero, we obtain the following equation for phase velocity of the wave:
[(@=10) = xo(a+ 2)e ™" —a(a+ zy)e ™" [ +dy,a=0.  (23)

The above mentioned problem was first considered in [6], where it was
established that Eq. (2.3) has two roots satisfying the attenuation condition (1.9).
An equivalent result was obtained in [7] in case of diffraction of electroelastic
shear wave.

Now consider the case when the conditions (1.4, a) are fulfilled at the
external boundary of the layer. According to [8], these conditions are reduced to

ow,/0y=0, Ow,/0y=0, when y=-h. (2.4)

Applying the Egs. (2.4) to the generic solution obtained in previous sections,

we derive the following dispersion equation:

L(n) = ae”sh(a ph)— ye*”"sh(ph) = 0. (2.5)
For the Eq. (2.5) following inequalities hold:
L(0) = (1- zp)e""sh(ph) >0,
L(1) ==x,sh(ph) <0,
this means that the Eq. (2.5) has at least one real root satisfying the attenuation

condition (1.9): i.e. there exists a Gulyayev—Bleustein type wave (subject to
condition ph#0). It can be shown that the root of Eq. (2.5) in the interval

(2.6)

0<n <1 is unique.
For large values of ph (short wave approximation), Eq. (2.5) has a solution:
a=y=>n=1-y" 1+ 1), (2.7)
that coincides with the velocity of the Gulyayev—Bleustein wave.
For small values of p& (long wave approximation) we obtain:

n=1—y/(1+y). (2.8)
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From comparison of (2.7) and (2.8) the velocity of long waves is larger, and,
thus, they attenuate faster with the distance from the surface of semi-space.
In the case of fixed and electrically earthed surface of y =—#/ layer (1.4, ¢),

the following dispersion equation is obtained:

M (1) = y,e*”"ch(ph)— ae” ch(a ph) = 0. (2.9)
The function M (n) satisfies the following inequalities:
M(0)=(x, —De"ch(ph) <0,  M(1)= y,ch(ph)>0, (2.10)

i.e. in this case the dispersion equation has an unique root satisfying the condition
0<n<1, also. However, contrary to the previous case, both in the short wave

(ph>>1), and the long wave approximation ( ph <<1), this equation has the root

(2.7) that corresponds to the Gulyayev—Bleustein wave.
The case of boundary conditions (1.4, d), is reduced to the form,
w, =0, Oy,/0y=0, when y=-h. The dispersion equation, corresponding to

these conditions is y,e””"sh(ph)+ae”ch(ph) =0. It is obvious that this equation
has no roots in the interval 0 <7 <1.

It is concluded, thus, that for boundary conditions (1.4, a) there exist two
Gulyayev—Bleustein type surface waves, for boundary conditions (1.4, b) and
(1.4, c) there exists by one surface wave in each case, and no surface wave does
exist in case of version (1.4, d).
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