Physical and Mathematical Sciences

Mathematics

DEFORMATION OF THE REAL PART OF β -UNIFORM ALGEBRA

T. M. KHUDOYAN *

Chair of Differential Equations YSU, Armenia

In this paper we investigate the deformation of the real part of β -uniform algebra on a locally compact Hausdorff space. We prove that if the deformation semigroup contains at least one deformation other than the affinity, then β -uniform algebra coincides with the algebra of all complex-valued bounded continuous functions.

MSC2010: 46H05; 46H20.

Keywords: β-uniform algebra, Hausdorff space, topology.

1. Let Ω be locally compact Hausdorff space, which admits a compact exhaustion (i.e. $\Omega = \bigcup_{n=1}^{\infty} K_n$, where $K_n \subset K_{n+1}$, and every $K_n \subset \Omega$ is a compact set) and $C_0(\Omega)$ is the algebra of all continuous complex-valued functions on Ω vanishing at "infinity". On the algebra $C_b(\Omega)$ of all bounded continuous complex-valued functions on Ω we define a topology by the family of semi-norms $\{P_g\}_{g\in C_0(\Omega)}$, where $P_g(f)=\sup|fg|$, for each $f\in C_b(\Omega)$. The topology on $C_b(\Omega)$, given by the family of semi-norms $\{P_g\}_{g\in C_0(\Omega)}$, is called β -uniform topology and the algebra $C_b(\Omega)$ equipped with this topology will be denoted by $C_{\beta}(\Omega)$. Recall that the closure of a subalgebra $A \subset C_{\beta}(\Omega)$ in β -uniform topology is called β -uniform, if it contains the constants and separates the points of Ω , i.e. for any points $x_1, x_2 \in \Omega$, where $x_1 \neq x_2$, there exists a function $f \in \mathcal{A}$ such that $f(x_1) \neq f(x_2)$ [1–3].

Since the uniform topology is stronger then the β -uniform topology, β-uniform algebra is closed in the *sup*-norm of a subalgebra of the uniform algebra $C_b(\Omega)$. Algebra \mathcal{A} , endowed with the uniform topology, is denoted, as in [3], by \mathcal{A}_{∞} , and its maximal ideal space is denoted by $M_{A_{\infty}}$. By virtue of I.M. Gelfand theory [4–6], each multiplicative functional on the algebra A_{∞} is continuous in the uniform norm, which is a cult in this theory, and $M_{A_{\infty}}$ is a compact *-weak topology of the subset of the unit ball in \mathcal{A}_{∞}^* -space conjugate to \mathcal{A}_{∞} .

^{*} E-mail: tigrankhudoyan@mail.ru

Recall (see [3]) that the Stone–Cech \mathcal{A} -compactification for Ω is the closure of *-weak topology of Ω in the maximal ideal space $M_{\mathcal{A}_{\infty}}$ for uniform algebra \mathcal{A}_{∞} .

We denote by M_A the set of all β -continuous linear multiplicative functionals of β -uniform algebra A. It is clear that $M_A \subset M_{A_\infty}$. The Shilov boundary of the algebra A_∞ is denoted, as usual, via ∂A_∞ , and the set $\partial A = \partial A_\infty \cap \Omega$ is called the β -Shilov boundary of A (this boundary can be empty).

Let Ω_0 be the Stone–Cech \mathcal{A} -compactification of Ω . Then the set Ω is dense in the compact set Ω_0 , and each function \mathcal{A} uniquely extends to a function on Ω_0 . This extension gives rise to a uniform algebra $\mathcal{A}_{(0)}$ on Ω_0 , so, $\mathcal{A}_{(0)}\big|_{\Omega}=\mathcal{A}$ [3,7,8].

2. Let $C_{\mathbb{R}}(\Omega)$ be the space of all real-valued continuous functions on Ω . Each real-valued function $\mathbf{h} \in C_{\mathbb{R}}(\Omega)$ induces a map $\Phi_{\mathbf{h}} : C_{\mathbb{R}}(\Omega) \to C_{\mathbb{R}}(\Omega)$, where $\Phi_{h}(f) = h(f)$. If $h(t) \in C_{\mathbb{R}}(\Omega)$ is an affine function, i.e. $h(t) = \alpha t + \beta$, where $\alpha, \beta \in \mathbb{R}$, then $\Phi_{h}(f) = \alpha f + \beta$.

 $Definition\ 1$. Φ_h is called a deformation of the space $ReA = \{u \in C_{\mathbb{R}}(\Omega) : u + iv \in A\}$, if $\Phi_h(u) \in ReA$ for every $u \in ReA$.

Each affine mapping $\mathbf{h}(t) = \alpha t + \beta$, where $\alpha, \beta \in \mathbb{R}$, generates a deformation on Re \mathcal{A} by the formula $\Phi_h(u) = \alpha u + \beta \in \text{Re}\mathcal{A}$.

The family of continuous deformations of the space ReA forms a subgroup under the operation of superposition. The family of all linear functions $h(t) = \alpha t + \beta$, where $\alpha, \beta \in \mathbb{R}$, forms a subgroup of affine deformations.

Let $\mathcal{K}(\mathcal{A})$ be the family of continuous deformations of Re \mathcal{A} . Then $\mathcal{K}(\mathcal{A})$ is semigroup with respect to superposition. We denote by $\mathcal{K}_a(\mathcal{A})$ the semigroup of all affine deformations, which is a subgroup of $\mathcal{K}(\mathcal{A})$.

It is easy to see, that if $\mathcal{A} = C_{\beta}(\Omega)$, then $\mathcal{K}(\mathcal{A}) = C_b(\Omega)$ is a semigroup with respect to superposition .

This note is devoted to the proof of the following assertion.

Theorem 1. Let \mathcal{A} be a β -uniform algebra on a locally compact Hausdorff space Ω . Then $\mathcal{A} = C_{\beta}(\Omega)$, if and only if there exists at least one non-affine continuous deformation on Re \mathcal{A} .

 $P\ r\ o\ o\ f$. If $A=C_{\beta}(\Omega)$, then as we have mentioned above, $\mathcal{K}(A)=C_{b}(\mathbb{R})$, which means that there is a non-affine continuous deformation on ReA.

Conversly, let Φ acts on Re \mathcal{A} as a non-affine continuous deformation, i.e.

$$\Phi: Re\mathcal{A} \to Re\mathcal{A}.$$

Let Ω_0 be the Stone–Cech \mathcal{A} -compactification of Ω , and $\mathcal{A}_{(0)}$ is the uniform algebra on the compact Ω_0 mentioned above.

Consider a linear extension operator $P: \mathcal{A} \overset{\text{on}}{\rightleftharpoons} \mathcal{A}_{(0)}$, such that $Pf = \hat{f}$ and $P^{-1}\hat{f} = \hat{f}|_{\Omega} = f$. By the Banach Theorem on the inverse operator, the operators P and P^{-1} are continuous: $\mathcal{A}_{(0)} \overset{P^{-1}}{\rightarrow} \mathcal{A} \overset{\Phi}{\rightarrow} \mathcal{A} \overset{P}{\rightarrow} \mathcal{A}_{(0)}$, i.e. $\operatorname{Re} \mathcal{A}_{(0)} \overset{P^{-1}}{\rightarrow} \operatorname{Re} \mathcal{A} \overset{\Phi}{\rightarrow} \operatorname{Re} \mathcal{A} \overset{P}{\rightarrow} \operatorname{Re} \mathcal{A} \overset{\Phi}{\rightarrow} \operatorname{Re} \mathcal{A} \overset{\Phi$

Theorem 2. Let \mathcal{A} be a β -uniform algebra on a locally compact space Ω . Then the discontinuous deformation Φ acts on Re \mathcal{A} , if and only if \mathcal{A} is finite.

 $P \ ro \ of$. Let \mathcal{A} be a β -uniform subalgebra of $C_{\beta}(\Omega)$, and Φ be a non-discontinuous deformation, which acts on Re \mathcal{A} . Consider, as above, the linear extension operator $P: \mathcal{A} \overset{\text{on}}{\rightleftharpoons} \mathcal{A}_{(0)}$.

Suppose that $\dim \mathcal{A} = \infty$, then $\dim \mathcal{A}_{(0)} = \infty$. But on the other hand, since the deformation Φ , acting on $\operatorname{Re} \mathcal{A}$, is discontinuous, then the deformation of $P \circ \Phi \circ P^{-1}$, which acts on $\operatorname{Re} \mathcal{A}_0$, is also discontinuous. Then, by the theorem of [10], we have that $\dim \mathcal{A}_{(0)} < \infty$, and since $\dim \mathcal{A} \leqslant \dim \mathcal{A}_{(0)}$, then $\dim \mathcal{A} < \infty$.

As a consequence, we note the following results:

 $Corollary\ 1$. If for a β -uniform algebra $\mathcal A$ the deformation of $\Phi_{\mathbf h}$, generated by the function $\mathbf h(t)=t^2$ acts on Re $\mathcal A$, then $\mathcal A=C_{\beta}(\Omega)$.

 $Corollary\ 2$. If for a β -uniform algebra $\mathcal A$ the deformation of $\Phi_{\mathbf h}$, generated by the function $\mathbf h(t)=|t|$ acts on $\operatorname{Re}\mathcal A$, then $\mathcal A=C_{\beta}(\Omega)$.

Note that the Corollaries 1 and 2 are improvements for of Wermer [11] and Bernard [12] corresponding theorems in the case of β -uniform algebras.

Received 04.09.2013

REFERENCES

- 1. **Buck R.C.** Bounded Continuous Functions on a Locally Compact Space. // Michigan Math. J., 1958, v. 5, p. 95–104.
- 2. **Karakhanyan M.I., Khor'kova T.A.** A Characterization of the Algebra $C_{\beta}(\Omega)$. // Functional Anal. and its Applic., 2009, v. 13, N_2 1, p. 69–71.
- 3. **Grigoryan S.A., Karakhanyan M.I., Khor'kova T.A.** On β uniform Dirichlet Algebras. // Journal of Contemporary Mathematical Analysis, 2010, v. 45, No 6, 17–26 (in Russian).
- 4. **Gelfand I.M., Raikov D.A., Shilov G.E.** Commutative Normed Rings. M.: Gosud. Izd. Fiz.- Mat. Lit., 1960 (in Russian).
- 5. Naimark M.A. Normed Rings. M.: Nauka, 1968 (in Russian).
- 6. **Rudin W.** Functional Analysis. New York–Sydney–Toronto, 1973.
- 7. **Karakhanyan M.I.** On β -uniform Algebras $H_{\beta}^{\infty}(\Delta)$. Second International Conference of Mathematics in Armenia, 2013, p. 41–42.
- 8. **Khudoyan T.M.** Algebra of Hyper-Analytic Functions as a β -uniform Algebra. // Proceedings of the YSU. Physical and Mathem. Sciences, 2013, N_2 3, p. 26–31.
- 9. **Hatori O.** Functions which Operate on the Real Part of a Function Algebra. // Proc. of the Amer. Math. Soc., 1981, v. 83, № 3, p. 565–568.
- 10. **Jarosz K., Sawon Z.** A Discontinuous Function does not Operate on the Real Part of a Function Algebras. // Časopis pro pěstovàni matematiky, 1985, v. 110, p. 58–59.
- 11. **Wermer J.** The Space of Real Parts of a Function Algebra. // Pacif. J. Math., 1963, v. 13, № 4, p. 1423–1426.
- 12. **Bernard A.** Espace des Parties Réelles des Éléments d'une Algèbre de Banach de Functions. // J. Funct. Anal., 1972, v. 10, p. 387–409.