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Bending vibrations of electroconductive plate-strip in the longitudinal 
magnetic field are being investigated. The problem is solved on the basis of 
hypothesis of magnetoelasticity of thin bodies by the use of the model of the 
perfect conductor for boundary condition on the surface faces of plate-strip. 
The numerical results of the frequency vibrations and damping coefficients 
are brought, based on the intensity of magnetic field. 
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1. Introduction and Problem Statement. The hypothesis of magneto-

elasticity of thin bodies, with the assumption of Kirchhoff’s theory, constant along 
thickness of tangential component of induced electric field and normal component 
of induced magnetic field is also proposed [1]. On the basis of hypothesis three-
dimensional interaction equations of elasticity and electrodynamics in the area 
occupied by plate are brought to two-dimensional [1–3]. However, in any case, the 
problem turns to stay three-dimensional, as the solution of electrodynamics around 
surroundings of plate is required. Only in special case, when the internal magnetic 
field is perpendicular in the middle of plane of the plate, there is no need to join 
with electrodynamic filed out of the plate. The results of different approaches to the 
final diverting of three-dimensional problem of magnetoelastic vibrations of the 
plate to two-dimensional in the longitudinal magnetic field were proposed [1, 4, 5]. 
In the present article, on the basis of the used model of the perfect conductor for 
boundary conditions on surface faces of plate, new way is proposed of bringing to 
two-dimensional problems. 

Elastic isotropic plate-strip with the constant thickness 2h and with the finite 
electroconductive   is in the external magnetic field 0 0 01( ,0,0)H H H

 
. Plate-

strip in Cartesian coordinate system takes area x    , 0 y b  , h z h   . 
In the equations of the motion of an elastic medium and in the equations of 

electrodynamics of Maxwell, with the use of the hypothesis of magnetoelasticity of 
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thin bodies, for bending vibrations of plate the following equation are established 
(see [1, 2]). 
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In the system of Eqs. (1.1), (1.2)   and   are
 

searched tangential 
components of induced electric field; f  is the normal component of induced 
magnetic field; w  is the searched deflection function of plate; 1 1 2 2, , ,h h h h     are 
the value of tangential component of induced magnetic field on the surface faces of 
plate z h  .   is the magnetic permeability of plate material; c  is the constant 
equal speed of light in the vacuum. In the Eqs. (1.2) 2  is the two-dimensional 
double Laplace operator, D  is the flexural stiffness of plate. 
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The obtained system of Eqs (1.1), (1.2) is two-dimensional concerning 
searched functions w ,  ,   and f (from , ,x y t ). However, these equations also 
contain searched values 1 1 2 2, , ,h h h h    . To finally reduce the problem of magnetic 
vibrations to two-dimensional, we propose searched values of tangential 
component of induced magnetic field on the surface faces of plate-strip to 
determine according to the model of perfect conductor. 

According to the model of perfect conductor, for establishing vibrations of 
induced magnetic field, is determined by the following way: 
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                                       (1.4) 
From (1.4) follows  
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The settings of (1.5) in the system  Eqs. (1.1), (1.2)  gives 
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The systems (1.6) from the four equations concerning the four searched 
function component of electromagnetic field  ,   and f and searched deflection 
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of plate-strip w , there is the result of data of three-dimensional problem of 
magnetoelastic vibration of plate-strip to two-dimensional. From the second and 
the third equation systems (1.6) defining the values of   and   and putting the 
values in the first equations, the system equations from four is brought to the 
system from two equations: 
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From the system (1.7) for the limiting case of perfect conductor ( )   is 
obtained next equation of bending vibrations of plate-strip: 
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2. The Vibration of Plate-Strip. The solution of the system (1.8) for plate-
strip ( )x     is proposed in the following way  
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Change of variables of (2.1) in (1.8) gives 
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where the following notes are done 
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The solution of the system (1.7) for plate-strip (    x ) is proposed by 
the following  
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Change of variables of (2.3) in Eq. (1.7) gives 
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where 
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Looking at the bending vibrations of plate-strip for the hinge supported 
boundary case, which were written when  
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The solution of the Eqs. (2.5) and (2.2) according to the boundary conditions 
(2.6) will be 
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3. Numerical Results. Before giving numerical results in the Eqs. (2.8) and 
(2.9), we’ll do the next assumptions, as 2 2 1k h  , then we’ll have 
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For Eqs. (3.1) and (3.2) numerical solutions were brought by                   

following values  1 1, , 0; 0.01; 0.05; 0.1 ,
20 100

npkh
k h


  

 
  is the 

dimensionless values characterize the value of magnetic field 
 0; 0.02; 0.04; 0.06; 0.08; 0.1 .     

In the Tab. 1 were brought the values kh    for the perfectly conductive 
plate-strip and *Im  for conductive plate-strip, and in the Tab. 2 are brought the 
values of damping  coefficients  . 
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T a b l e  1   
 

Vibration frequency 
 

– *  *Im  

  – 0.01
h

   0.05

h

  0.1

h

  

0 0.050005 0.050005 0.050005 0.050005 
0.02 0.249989 0.249989 0.249986 0.249976 
0.04 0.349984 0.349983 0.349981 0.349974 
0.06 0.42718 0.42718 0.427178 0.427172 
0.08 0.492419 0.492419 0.492417 0.492413 
0.1 0.549973 0.549973 0.549972 0.549967 

 
 

T a b l e  2  
 

Damping coefficients 
 

–   damping coefficients 

  0.01
h

   0.05

h

  0.1

h

  

0 –5×10–5 –2.50×10–3 5×10–3 

0.02 –1,99×10–5 –9.98×10–5 1.99×10–4 
0.04 –10–5 –5.07×10–5 10–4 
0.06 –6.80×10–6 –3.40×10–5 –6.80×10–5 
0.08 –5.11×10–6 –2.55×10–5 –5.11×10–5 
0.1 –4.08×10–6 2.04×10–5 –4.08×10–5 

 
According to the Tab. 1, the frequency values of vibrations for the perfectly 

conductive and electroconductive plate-strip do not differ. But, unlike perfectly 
conductive plate-strip, for electroconductive plate-strip are also obtained damping 
coefficients. Also, according to the Tab. 1, by increasing magnetic field the 
frequency vibrations are being increased. And in the Tab. 2 is shown that by 
increasing magnetic field the damping coefficient decreases. 
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