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In this paper a recursive approach is suggested for the problem of Minimum
Linear Arrangement (MINLA) of a graph by length. A minimality criterion
of an arrangement is presented, from which a simple proof is obtained for
the polynomial solvability of the problem in the class of bipartite, I"-oriented
graphs.
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1. Introduction. We will assume that the graphs considered in this paper
are finite, oriented and do not contain multiple edges or loops. For a graph G, let
V(G) and E(G) denote the sets of vertices and edges of G, respectively. For a vertex
veV(G),letT'; and I denote the sets of ancestors and predecessors of v respec-
tively: Iy ={ueV/(u,v) €eE(G)}, T}t ={ueV/(vyu)€E(G)}. An oriented
graph G(V,E) is called I'-oriented, if for any vertices u,v € V(G) either I} C T}
or I CTf. The terms and concepts, which are not defined here can be found in
[1]. The problem of a minimum linear arrangement (MINLA) of oriented graphs is
defined as follows:

Problem. For a given oriented graph G(V, E) construct a one to one func-
tion f: V — {1,,|V(G)|} such that the following two conditions are satisfied:

V(u,v) € E(G), f(u) < f(v),
Y (f(v) = f(u)) = min. (1.1)
(u,v)€E(G)

Any function, satisfiing (1.1), the acceptability condition, is called a labeling
function for the graph G. We denote by F(G) the set of all labeling functions of the
graph G. The length L(G, f) of the arrangement f € F(G) is defined as follows:

LGl = Y (fO)—fu)). (1.2)

(u,v)EE(G)
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Let L(G) = min;p ) L(G, f). Define M(G) = {f € F(G)/L(G) = L(G, f)}.

It is clear that a vertex v € V(G) has different impact on the length of the
arrangement depending on f € F(G) , so let us introduce a weight function W :
V(G) X F(G) — Z; by

W(V,f) = L(Gaf) _L(G\vav)7 (1.3)

where G\v is a graph obtained from G by removing the vertex v and f, is the arrange-
ment for G\v defined by:

) :{ f(w), it W< ),

fw—1, i) < flu). (1.4)

Obviously f, € F(G\v), since the acceptability condition is inherited from f.

Let us define the minimum impact of the vertex v € V(G) as follows:
W (v) = fénpl(nG)W(v,f).

2. The Main Result. It is known that MINLA problem for oriented graphs is
NP complete [2], and it remains NP complete for transitive oriented, bipartite graphs
[3]. Itis also known [4] that for any bipartite, I'-oriented graph G(V,E) with V =X U
UY, X ={x1,x2, ..., Xu}, ¥ ={y1, ¥2, -, Ym}» Where [} | >[IV | > ... > T,
T, | < |I5,] < ... < |, |, there exists a minimum linear arrangement f of the
following kind:

Xy Xp—1 --- X1 Yim Ym—1 --- V1- (2.1)

Below we present a new approach to the solved problem of MINLA of bipartite,
I'-oriented graphs (see [4]). The basic idea of the new approach is formulated in
Lemma 1. Suppose that a labeling function f of some graph G satisfies the following
conditions:

v € V(G) with W (v, f) = Wi (v), (2.2)

fr € M(G\v). (2.3)

Lemma 1. Any arrangement f € F(G) satisfying the conditions (2.2) and
(2.3) is a minimum arrangement for G.

Proof. From (1.3), L(G, f) =W(v, f) +L(G\v, f,) = W.(v) +L(G\v, f,) =
=W, (v) +L(G\v). Since for any arrangement & € F(G) the inequalities W (v,h) >
> W,(v) and L(G\v,h) > L(G\v) hold by definition, we can conclude that

L(G,h) =W (v,h) + L(G\v,h,) > W,(v) + L(G\v) = L(G, f).
So, for any h € F(G), L(G,h) > L(G, f), which means that f € M(G). O

Remark 1. Lemma 1 can be applied for arrangements of non-oriented graphs.
Lemma 2. For any bipartite, ["-oriented graph G and any arrangement

+ (I
he F(G), Wenh) > WDl P 0 ine ) and Wik, ) = W (5,), where
f is given by (2.1).
Proof. Since h € F(G) we have that there are vertices x;,,X;,,...,x; such
that A(x;;) <h(x,), j=1,...,k, and vertices x;,,,,...,x;,_, such that h(x;;) > h(x,),
j=k+1,...,n—1,and for all vertices y € I’} , h(y) > h(x;),i=1,...,n.
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Now let estimate the impact of x, on the length of the arrangement.
By removing x,, we also remove |} | edges, the i -th of them, 1 <i <|I'} |, has the
length no less than n — 1 — k4 i. Moreover, we are shortening by 1 all edges from
Xiy,Xiy,, Xi, to I’ . So, we are shortening at least k|I"} | edges by 1. We have

o +1)

LA (A )
L(G\xy, hy,) < L(G,h) 2 (n—1)[T} ] (2.4)

Using W (x,,h) = L(G,h) — L(G\xy, hy, ) and (2.4), we obtain

CH(T[+1
Wsnh) > 206, — (1(G) — ey ) and
CH(rf|+1
W (xp,h) > “’M;"‘)Jr(n—l)]l“m. (2.5)

Since (2.5) holds for any arrangement i € F(G), then

Co|(Tf ] +1
Wi (x,) > ’xn|(|2x")+(l’l— NIy .

On the other hand, it is easy to see that
+(IT+
W (xn, f) = WZ"HI) ++ -1

Consequently W (x,, f) = W (x,). O

Theorem. For an arbitrary bipartite, I'-oriented graph G, f (the labeling
function f given in (2.1)) is a minimum linear arrangement.

P roof. We prove the theorem by induction on the number of vertices of X.
It is easy to see that for |X| =1, f is a minimum linear arrangement. Let us assume
that the theorem holds for |X| = n— 1 and let us prove it for |X| = n. From Lemma 2
we have that W (x,, f) = W, (x,). Since in f,, the decreasing order of degrees of the
vertices Ym, Ym—1,- - -,y1 in G\x, is kept, then, by the assumption of the induction, we
have f,, € M(G\x,). It means that f satisfies the conditions of Lemma 1 and, thus,
f is a minimum linear arrangement of the graph G. U

Remark 2. Similarly, it can be shown that f’, given by

XL YUYty X2 Y41 - - Xn—1 Yty o1 -+ Yty Xn Yty +1---Ym;

where #; = [} | — [T} | |, also satisfies the conditions of Lemma 1 and f' € M(G).
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