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We consider the formation of the surface plasmon polariton whispering 

gallery modes in the convex cylinder cavity. Developed theoretical model 
allows obtaining the closed-form expressions for the mode field distributions, 
resonant frequency, as well as the emitting and dissipative losses in the 
structure in a broad wavelength range. The obtained results give opportunity 
to find optimal conditions for efficient emission in convex cylinder cavity and 
serve as practical guidelines for stimulated emission. 
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Introduction. The unique properties of surface plasmon polaritons (SPP) 

permit further miniaturization of wavelength-scale photonic circuits to sizes that 
are much smaller than those currently achieved. The features of SPP such as 
enhanced and spatially confined electromagnetic fields at metal-dielectric interfaces 
[1, 2] have been exploited in various fields, for example in nanophotonics [3, 4], 
biosensing  [5–9], light generation [10]. Despite the great promise of SPP many 
applications remained impractical due to high losses resulting from the damping of 
electromagnetic fields in metals. The active plasmonics, which describes the 
interaction between active medium and SPP, offers an opportunity to expand    
SPP-based applications. Furthermore, if the optical gain is high enough to exceed 
the absorption loss, the compact plasmonic lasers may be realize [11–14]. A step 
towards quantum nanoplasmonics was proposed by Bergman group, which showed 
that SPP fields of the nanosystem were quantized and observed their stimulated 
emission [15, 16]. For the first time a quantum generator for SPP quanta was 
introduced and the phenomenon of surface plasmon amplification by stimulated 
emission of radiation (spacer) and its use in nanolense was considered [16]. The 
examples of recent advances are microscopic lasers based on photonic crystals 
[17], metal-clad cavities [13] and nanowires [18–20], by means of which the 
diffraction limit was reached. Because of the strong enhancement of the field 
induced by excitation of SPP and, consequently, of an increased optical 
nonlinearity, SPP are particularly suited for providing this functionality. 
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With rapidly advancing nanoscale patterning and processing technology, it 
becomes increasingly practical to generate optical elements from spatially 
modulated films. Thus, the resonant periodic waveguide is currently receiving 
considerable research and development interest. Resonant phenomena in structures 
that include gratings and dielectric waveguides became subjects of investigations 
both theoretical and experimental. 

 In the present work an analytical theory of convex cylinder microcavity has 
been developed, with the help of which optimal 
solutions for the stimulated emission of SPP will be 
obtained. The problem of significant radiation 
losses in this cavity with absorption losses of SPP 
was discussed. The physical constraints imposed 
by large in-plane extent of the optical field and out-
of-plane operation of some of these devices preclude 
their integration in ultra-compact plasmonic systems. 

Theory. Under consideration below are the 
characteristics of SPP, which are localized on the 
surface of metallic convex cylinder cavity with 
dielectric permittivity m , that is immersed in 
dielectric medium with permittivity .d  This 
structure is schematically represented in Fig. 1. 

In the cylindrical coordinate system the wave 
equation for z-component of magnetic field is as follows: 
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We represent the solution in the form 
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which permits to separate the variables in terms of applicability of the adiabatic 
approximation: 
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Changing the variable 
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Now consider a metallic convex cylinder with radius r(z) and a dependence 
of  r(z)  on  z  as given by the following expression: 
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where 0 (0)r r  is the maximum radius of structure and  is the coefficient, which 
defines the shape of structure. Using approximation (3), the following wave 
equation is obtained: 
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Fig. 1.  Schematic  view  of  convex 
cylinder structure for the SPP. 
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When | | ( ),u r z  from Eq. (6) we can get:  
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The solution of Eq. (7) is determined by the following expression: 
          , | ( )|( , ) ,m d r zR z Ae                                            (9) 

   

2 2

2 2
0

m m
n

c
 


    in metal region  ( ( ))r z  ,      (10) 

                            

2
2

2d dk
c
     in dielectric region  ( ( ))r z  .         (11) 

From boundary conditions we get the following expression for k: 
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Finally, from Eq. (5) and (8), we have 
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This is the well known quantum mechanical equation for harmonic 
oscillator. The physical solutions of this equation satisfy the following condition: 
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where s = 0,1,2,3,… Using Eq.(14), the cavity resonant frequency is determined as 
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frequency of cylinder cavity (for  = 0) with radius 0.r  
Results and Discussion. The general solution for Eq. (13) is 
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where sH  is the Hermit polynomials and sC  is a constant. 
Using Eqs. (9) and (16), the z-component for magnetic field in case of  

fundamental mode (s = 0) can be written as: 
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Eq. (17) shows that for fundamental mode the propagation length in z -direction 

depends on the shape of metal structure and, thus, the speed of decay of 0zH  in   



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2014, № 1, p. 61–66. 
 

64 

z -direction depends on 0, ,r n  and is localized in  02 /dz r n  region. The 
faster is the decrease of the structure radius, the shorter is the field propagation 
range in z -direction. 
 

 
 

 

Fig. 2. The stimulated field distribution for 0 zH in (XZ) (a) and (XY) (b) planes for fundamental mode 
( 0)s   at 1SPP 

 
m  for  0.1   and  10n  . Dashed line shows the surface of metal structure.                         

The material of structure is gold and the surrounding medium is a dielectric  with permittivity 1.d   

 
In Fig. 2 the stimulated field distribution for 0zH  in (a) (XZ) and (b) (XY) 

planes is shown. The magnetic field is limited (two-scale localized) in a small 
region near metallic surface at the maximum of r (r = r0, z = 0) and exponentially 
decrease to the direction of dielectric 0( ).r r  For example, the magnetic field is 
localized within 0 00.9z r  in z-direction and 0 00.4 r   in -direction for                 
β = 0.1  and  n =10. 

In the radiation range ( )u r z  we ignored the changes of r(z) and assumed 
that 0( )r z r . With this approximation in the transition zone the following 
expression is obtained for fundamental mode of magnetic field: 
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where 0 / .d dq c   
The other components of the field are obtained from the Maxwell equations. 
Then, it is easy to find the radiation part )( rQ  of the Q-factor as 
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Here r  is the real part of dielectric permittivity of metal ( )m r ii    . 
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The dissipative part )( dQ  of  Q-factor is easily obtained for 0 1sr k   
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Finally, for the total quality factor tQ  we have 
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The optimal conditions for SPP modes in the convex cylinder cavity are 
determined using Eqs. (19)–(21). In Fig. 3 the dependence of Q -factors ( rQ ,  dQ  
and  )tQ   of the convex cylinder cavity on wavelength of SPP is shown. 

 
 

 
 

 
 
 
 
 
Fig. 3. The dependence of Q-factors (where   
Qd,  Qr,  Qt  are the dissipative, radiation                
and total losses respectively) of the convex 
microcylinder cavity on the wavelength of               
SPP  for 0.1   and 10n  . The material of 
structure   is   the   gold   and   the   surrounding  

medium is the air. 
 

In the radiation range ( )u r z  the fields are similar to those of 
microcylindrical cavity for SPP with radius 0r  [21]. We have the same situation 
for Q-factors as follows from Eqs. (18)–(20) and Fig. 3: the highest value of     
Q-factors is achieved when | | ,r d i   . Note that the last condition is well 
satisfied in the infrared region of the spectrum, in particular when 

0 1.55SPP m    , which is very important for optical communication 
systems. The presence of surrounding dielectric medium ( 1)d   significantly 
reduces (about 3 times) the value of Q-factors, however, the Qt is mainly 
determined by radiation losses. Note also that field localization is better and 
resonant frequency is higher for higher-order modes than for the fundamental 
mode. Thus, for efficient stimulated of SPP emission in the convex cavity it is 
necessary to provide a relatively high value of Q-factors. 

Conclusion. The formation of SPP modes in the convex cylinder microcavity 
is discussed. Analytic solution for wave equation for convex microcylinder metallic 
structure shows the two-scale localization in z-direction and in -direction. The 
wave field holds in the surface of metal and is not localized in z-direction due to 
dependence of the propagation length on  factor of the structure. Thus, the 
configuration of convex chamber decides the field distribution and localization. 
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This structure can serve for elaboration of practical guides to designing SPP 
microcavity for stimulated emission and strong localization.  
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