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ON WEIGHTED SOLUTIONS OF ∂ -EQUATION IN THE UNIT DISC
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In the paper an equation ∂g(z)/∂ z = v(z) is considered in the unit disc D.
For Ck-functions v (k = 1,2,3, . . . ,∞) from weighted Lp-classes (1 ≤ p < ∞)
with weight functions of the type |z|2γ(1−|z|2ρ)α , z∈D, a family gβ of solutions
is constructed (β is a complex parameter).
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Introduction. In [1] a generalization of the famous Cauchy integral formula for
smooth functions was presented. More exactly, if Ω is a bounded domain with piece-
wise smooth boundary and f ∈C1(Ω), then the following formula holds (so-called
Cauchy–Green formula):

f (z) =
1

2πi

∫
∂Ω

f (ζ )
ζ − z

dζ − 1
π

∫∫
Ω

∂ f (ζ )

∂ζ

ζ − z
dm(ζ ), z ∈Ω, (1)

where m is two-dimensional Lebesgue measure in the complex plane. Recall that
∂

∂ζ
=

1
2

(
∂

∂x
+ i

∂

∂y

)
(ζ = x+ iy) (2)

is the Cauchy–Riemann operator and it annihilates holomorphic functions,

i.e.
∂ f (ζ )

∂ζ
≡ 0 if f is holomorphic in Ω. As the first summand in (1) is

holomorphic in Ω, we can conclude that a solution of so-called ∂ -equation

∂g(z)
∂ z

= v(z), z ∈Ω, (3)

with given v ∈C1(Ω) and unknown g ∈C1(Ω) can be found in the form

g(z) =− 1
π

∫∫
Ω

v(ζ )
ζ − z

dm(ζ ), z ∈Ω. (4)
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The Eq. (3) plays an important role in complex analysis (especially in several
complex variables). Nevertheless, in one complex variable it also had important
applications in the corona problem solution and approximation theory.

Recall the following results, concerning the solution of Eq. (3).

T h e o r e m 1. (Theorem 1.2.2, [2]). If Ω ⊂ C is an open bounded set,
k = 1,2,3, ...,∞ and v ∈ Ck

c(Ω), i.e. v ∈ Ck(Ω) and v has a compact support in
Ω, then the function g defined by the formula (4) belongs to Ck(Ω) and satisfies
the Eq. (3).

T h e o r e m 2. (Proposition 16.3.2, [3]; Theorem 1.1.3, [4]). If Ω ⊂ C
is an open bounded set, k = 1,2,3, ...,∞ and v ∈ Ck(Ω)∩ L∞(Ω) or v ∈ Ck(Ω)∩
L1(Ω), then the function g defined by the formula (4) belongs to Ck(Ω) and satisfies
the Eq. (3). Moreover, we have

‖g‖∞ ≤ (diam(Ω))2 · ‖v‖∞ or ‖g‖1 ≤ (diam(Ω))2 · ‖v‖1. (5)

In [5], where the cases of the unit ball Bn ⊂ Cn and the unit polydisc Un ⊂ Cn

were considered, it was given the following generalization of (1) for the unit disc
D= {ζ : |ζ |< 1} (Reβ >−1 and f ∈C1(D)):

f (z) =
β +1

π

∫∫
D

f (ζ )(1−|ζ |2)β

(1− zζ )2+β
dm(ζ )

− 1
π

∫∫
D

∂ f (ζ )

∂ζ

ζ − z

(
1−|ζ |2

1− zζ

)β+1

dm(ζ ), z ∈ D, (6)

where the first summand of (6) is holomorphic in z ∈D that was first appeared in [6,7].
Hence, similar to (4), the second summand of (6) can serve as a formula for a solution
of ∂ -equation (3):

gβ (z) =−
1
π

∫∫
D

v(ζ )
ζ − z

(
1−|ζ |2

1− zζ

)β+1

dm(ζ ), z ∈ D. (7)

Namely, the following assertion holds:

T h e o r e m 3. Assume that 1 ≤ p < +∞, α > −1 and Reβ > α . If
v ∈ C1(D)∩ Lp

α+1(D), then the function gβ defined by the formula (7) belongs to
C1(D)∩Lp

α(D) and satisfies the equation (3). Moreover, we have

‖gβ‖p,α ≤ const(α,β )‖v‖p,α+1. (8)

This Theorem is a consequence of a corresponding multidimensional result
of [5]. In its formulation the following notations are used:

‖ f‖p
p,α =

∫∫
D

| f (ζ )|p(1−|ζ |)αdm(ζ ),

Lp
α(D) = { f (ζ ),ζ ∈ D : ‖ f‖p,α <+∞}.
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Note that integral representations of type (6) obtained in [5] for the unit ball
Bn, were generalized in [8] (for the matrix unit disc) and in [9] (where very general
weight functions were considered for the unit ball Bn).

Further generalizations of the formula (6) for the unit disc D were obtained
in [10–13] (under various assumptions on f (ζ ) and ∂ f (ζ )/∂ζ ) and can be written as
follows:

f (z) =
∫∫
D

f (ζ )Sβ ,ρ,ϕ(z;ζ )(1−|ζ |2ρ)β |ζ |2ϕdm(ζ )

− 1
π

∫∫
D

∂ f (ζ )

∂ζ

ζ − z
Qβ ,ρ,ϕ(z;ζ )dm(ζ ), z ∈ D, (9)

where the kernels S and Q were represented in an explicit (integral or series) form.
In the present paper we show (Theorems 4 and 5) that the second part of (9)

generates a family of solutions of ∂ -equation (3) in D.
Preliminaries. In this section we present several formulas and facts

from [10] and [13].
Assume that ρ > 0, α > −1 and γ > −1. For 1 ≤ p < +∞ and arbitrary

complex-valued measurable function f (ζ ), ζ ∈ D, put

Mp
α,ρ,γ( f ) =

∫∫
D

| f (ζ )|p(1−|ζ |2ρ)α |ζ |2γdm(ζ ) (10)

and define
Lp

α,ρ,γ(D) = { f (ζ ),ζ ∈ D : Mp
α,ρ,γ( f )<+∞}. (11)

Evidently, Lp
α,ρ,γ(D)⊂ L1

α,ρ,γ(D),1≤ p <+∞ (see Proposition 3.3 in [14]).
Assume that Reβ > −1, Reϕ > −1 and µ = (ϕ + 1)/ρ . For arbitrary z ∈ D

and ζ ∈ D the kernel Qβ ,ρ,ϕ(z;ζ )≡ Q(z;ζ ) is defined as follows:

Qβ ,ρ,ϕ(z;ζ ) = 1+
(z−ζ )ρ

ζ Γ(β +1)

∞

∑
k=0

Γ

(
µ +β +1+ k

ρ

)
Γ

(
µ + k

ρ

) zk

ζ k

|ζ |2∫
0

(1− tρ)β tϕ+kdt

≡ 1+
z−ζ

ζ Γ(β +1)

∞

∑
k=0

Γ

(
µ +β +1+ k

ρ

)
Γ

(
µ + k

ρ

) · zk

ζ k

|ζ |2ρ∫
0

(1− x)β xµ+ k
ρ
−1dx, (12)

where ζ ∈ D\{0} and
Qβ ,ρ,ϕ(z;0)≡ 1. (13)

It was proved in the Section 2.2 in [10], that in the special case ρ = 1 and ϕ = 0

the kernel Q takes the form
(

1−|ζ |2

1− zζ

)β+1

.

The following assertions describe a part of the properties of the introduced
kernel.



ON WEIGHTED SOLUTIONS OF ∂ -EQUATION IN THE UNIT DISC 23

P r o p o s i t i o n 1. The kernel Q(z;ζ ) is well-defined for z ∈ D and ζ ∈ D
by (12) and (13). Moreover, Q(z;ζ ) is continuous in D\{0} for a fixed z and
holomorphic in D for a fixed ζ .

P r o p o s i t i o n 2. Suppose 0 < |ζ | ≤ 1
2

. Then

|Q(z;ζ )−Q(z;0)| ≡ |Q(z;ζ )−1| ≤ const(β ,ρ,ϕ)
(1−|z|)Reβ+1

{
|ζ |2Reϕ+1, z 6= 0,
|ζ |2Reϕ+2, z = 0.

(14)

P r o p o s i t i o n 3. Let (1+ |z|)/2≤ |ζ | ≤ 1, then

|Q(z;ζ )| ≤ const(β ,ρ,ϕ)

(
1−|ζ |2ρ

)Reβ+1

(1−|z|)Reβ+2 . (15)

Weighted Solutions of ∂ -equation in D. Let ρ > 0, Reβ > −1, Reϕ > −1
and µ = (ϕ +1)/ρ . Assume also that Qβ ,ρ,ϕ(z;ζ )≡ Q(z;ζ ) is defined by (12), (13)
and for a function v(ζ ), ζ ∈ D, put formally

gβ ,ρ,ϕ(z) =−
1
π

∫∫
D

v(ζ )
ζ − z

Qβ ,ρ,ϕ(z;ζ )dm(ζ ), z ∈ D. (16)

T h e o r e m 4. If v ∈Ck
c(D), k = 1,2,3, . . . ,∞, then g(z)≡ gβ ,ρ,ϕ(z) is of class

Ck(D) and satisfies the ∂ -equation (3).

P ro o f. Obviously, |v(ζ )| ≤M, ζ ∈ D. According to Propositions 1 and 2 the
integral of (16) is convergent for every z ∈D, i.e. the function g is well-defined. Using
the formulas (12) and (13), we can write g(z) in an expanded form:

g(z) =− 1
π

∫∫
D

v(ζ )
ζ − z

dm(ζ )+
1
π
· ρ

Γ(β +1)

×
∫∫
D

v(ζ )
∞

∑
k=0

Γ(µ +β +1+ k/ρ)

Γ(µ + k/ρ)
· zk

ζ k+1

|ζ |2∫
0

(1− tρ)β tϕ+kdt

dm(ζ )

=− 1
π

∫∫
D

v(ζ )
ζ − z

dm(ζ )+
1
π
· ρ

Γ(β +1)

×
∞

∑
k=0

Γ(µ +β +1+ k/ρ)

Γ(µ + k/ρ)
zk
∫∫
D

v(ζ )
ζ k+1

|ζ |2∫
0

(1− tρ)β tϕ+kdtdm(ζ )

 ,

where the change of the order of the summation and the integration is justified by the
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following chain of inequalities:∣∣∣∣∣ n

∑
k=0

Γ(µ +β +1+ k/ρ)

Γ(µ + k/ρ)
v(ζ )

zk

ζ k+1 ζ
2k

∣∣∣∣∣
≤

n

∑
k=0

∣∣∣∣Γ(µ +β +1+ k/ρ)

Γ(µ + k/ρ)

∣∣∣∣ |v(ζ )| |z|k|ζ |k+1 |ζ |
2k

≤M const(β ,ρ,ϕ)
n

∑
k=0

Γ(k+Reβ +2)
Γ(k+1)

· |z|
k |ζ |k

|ζ |

=
const
|ζ |

n

∑
k=0

Γ(k+Reβ +2)
Γ(k+1)

(|z| |ζ |)k

=
const
|ζ |
· 1
(1−|z| |ζ |)Reβ+2 ≤

const
|ζ |(1−|z|)Reβ+2 ∈ L1 (D) .

In the estimation above we use the following consequence of the Stirling’s formula:
|Γ(µ +R)|
|Γ(ν +R)|

� RReµ−Reν , R→+∞.

Thus

g(z) =− 1
π

∫∫
D

v(ζ )
ζ − z

dm(ζ )+
∞

∑
k=0

ckzk ≡ g1(z)+g2(z), z ∈ D. (17)

According to Theorem 1, we have g1 ∈ Ck(D) and ∂g1(z)/∂ z ≡ v(z),
z ∈ D. Further, since g2(z) is representable by a power series in D, g2 is holo-
morphic in D, i.e. ∂g2(z)/∂ z≡ 0, z ∈D. Hence, g ∈Ck(D) and g satisfies the Eq. (3).
The proof is complete.

T h e o r e m 5. Assume that α > −1, γ > −1, 1 ≤ p < +∞, Reβ ≥ α

and Reϕ ≥ γ . Also let
v(ζ ) ∈Ck(D)∩Lp

α+1,ρ,γ(D) (18)

for k = 1,2,3, . . . ,∞. Then g(z) ≡ gβ ,ρ,ϕ(z) is of class Ck(D) and satisfies the
∂ -equation (3).

P ro o f. First of all let’s prove that under the assumptions of the theorem
the integral (16) is convergent for every z ∈ D. Close to the boundary, when
(1+ |z|)/2≤ |ζ |< 1, we have (due to Proposition 3):

|v(ζ )|
|ζ − z|

|Q(z;ζ )| ≤ 2|v(ζ )|
1−|z|

· const(β ,ρ,ϕ)(1−|ζ |2ρ)Reβ+1

(1−|z|)Reβ+2

≤ const(β ,ρ,ϕ,z)|v(ζ )|(1−|ζ |2ρ)α+1. (19)

Hence, in view of (18) and the fact that Lp
α,ρ,γ(D) ⊂ L1

α,ρ,γ(D),1 ≤ p < +∞,
the convergence near the boundary was proved.

Now let’s see the convergence in the neighborhood of z, when z 6= 0.
Since 1/(ζ − z) has integrable singularity and since v and Q are bounded near z
then the convergence is obvious.
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Finally, we have to show the convergence in the neighborhood of 0.
We have two cases here.

Case 1. z 6= 0, then in view of Proposition 2 we have for 0 < |ζ |< |z|/2:

|v(ζ )||Q(z;ζ )|
|ζ − z|

≤ 2 M |Q(z;ζ )|
|z|

≤ 2 M const(β ,ρ,ϕ,z)
|z|

(
1+ |ζ |2Reϕ+1)

≤ 2 M const(β ,ρ,ϕ,z)
|z|

(
1+ |ζ |2γ+1) ∈ L1 (0 < |ζ |< |z|/2) ,

where M = max{|v(ζ )| : |ζ | ≤ |z|/2}.
Case 2. z = 0, then in view of Proposition 2 we have for 0 < |ζ |< 1/2:

|v(ζ )||Q(0;ζ )|
|ζ |

≤ 2 M const(β ,ρ,ϕ)
|ζ |

(
1+ |ζ |2γ+2) ∈ L1 (0 < |ζ |< 1/2) .

Thus integral (16) is convergent, i.e. g(z) is well-defined for every z ∈ D. We have to

show that g ∈Ck(D) and
∂g(z)

∂ z
≡ v(z), z ∈D. As these properties are local, it suffices

to prove them in a neighborhood of an arbitrary point z0 ∈ D (we intend to use the
technique applied in the proof of Theorem 1.2.2 in [2]).

Let’s take 0 < r1 < r2 such that D1 = {|ζ − z0| ≤ r1} ⊂D2 = {|ζ − z0| ≤ r2} ⊂
D. In addition, if z0 6= 0, we assume that r1 < |z0|/2 and if z0 = 0 we assume that
r1 < 1/2. Obviously, there exists a function ψ ∈C∞

c (D) such that

ψ|D1 ≡ 1, (20)

ψ|D\D2 ≡ 0, (21)

ψ|D2\D1 ∈ [0,1]. (22)

Hence we can write:

g(z) =− 1
π

∫∫
D

v(ζ ) ψ(ζ )

ζ − z
Q(z;ζ )dm(ζ )

− 1
π

∫∫
D

v(ζ ) (1−ψ(ζ ))

ζ − z
Q(z;ζ )dm(ζ )≡ g1(z)+g2(z), z ∈ D. (23)

From Theorem 4 we get that g1(z) ∈Ck(D) (hence g1(z) ∈Ck(D1)) and

∂g1(z)
∂ z

≡ v(z) ψ(z)≡ v(z), z ∈ D1. (24)

Since ψ(ζ )≡ 1, when ζ ∈ D1, we can write

g2(z) =−
1
π

∫∫
D\D1

v(ζ )(1−ψ(ζ ))

ζ − z
Q(z;ζ )dm(ζ ), z ∈ D. (25)

We intend to show that g2 ∈ H(D1), i.e. g2 is holomorphic in D1. To this

end first let’s note that for a fixed ζ ∈ D\D1, the kernels
1

ζ − z
and Q(z;ζ ) are
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holomorphic with respect to z ∈ D1. Consequently, it is sufficient to find a function
W (ζ ) ∈ L1(D\D1) such that

|v(ζ )|(1−ψ(ζ ))

|ζ − z|
|Q(z;ζ )| ≤W (ζ ) (26)

uniformly with respect to ζ ∈ D\D1 and z with |z− z0| ≤ r0 < r1.

Obviously, 0≤ 1−ψ(ζ )≤ 1,
1

|ζ − z|
≤ 1

r1− r0
. Hence, we have to estimate

|v(ζ )||Q(z;ζ )|.
Case 1. z0 6= 0. Put λ = |z0|+ r0 < 1. Let’s split D\D1 into 3 disjoint parts:

A =

{
ζ ∈ D\D1 :

1+λ

2
< |ζ |< 1

}
,

B =

{
ζ ∈ D\D1 : |ζ |< 1

2

}
,

C =

{
ζ ∈ D\D1 :

1
2
≤ |ζ | ≤ 1+λ

2

}
.

If |z− z0| ≤ r0 and ζ ∈ A, then |z| ≤ |z0|+ r0 = λ . Hence
1+ |z|

2
<

1+λ

2
.

Then according to Proposition 3 we have

|Q(z;ζ )| ≤ const(β ,ρ,ϕ)
(1−λ )Reβ+2

(
1−|ζ |2ρ

)α+1
.

Hence

|v(ζ )||Q(z;ζ )| ≤ const(β ,ρ,ϕ,λ ) |v(ζ )|
(
1−|ζ |2ρ

)α+1 ≡W1(ζ ).

In view of (18) we have W1 ∈ L1(A).
If |z− z0| ≤ r0 and ζ ∈ B, then according to Proposition 2

|Q(z;ζ )| ≤ 1+
const(β ,ρ,ϕ)
(1−λ )Reβ+1 |ζ |

Reϕ+1

|v(ζ )||Q(z;ζ )| ≤ |v(ζ )|(1+ const(β ,ρ,ϕ,λ )|ζ |2γ+1)≡W2(ζ )

and W2 ∈ L1(B) as v(ζ ) is bounded on
{

ζ ∈ D\D1 : |ζ |< 1
2

}
.

If |z− z0| ≤ r0 and ζ ∈C, then note that{
(z,ζ ) : |z− z0| ≤ r0 and

1
2
≤ |ζ | ≤ 1+λ

2

}
is a compact set in the space C2. At the same time, as it follows from the proof of
Proposition 1 of [13] the kernel Q(z;ζ ) is a continuous function in variables z ∈ D
and ζ ∈ D\{0}. Consequently, |Q(z;ζ )| is uniformly bounded in ζ ∈C and z with
|z−z0| ≤ r0. Also |v(ζ )| is uniformly bounded in ζ ∈C. Thus |v(ζ )||Q(z;ζ )| ≤M1 ≡
W3(ζ ) ∈ L1(C). It remains to put

W (ζ ) =


W1(ζ ), ζ ∈ A,
W2(ζ ), ζ ∈ B,
W3(ζ ), ζ ∈C,
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and note that W evidently belongs to L1(D\D1).
Case 2. z0 = 0. Hence |z| ≤ r0. Similar to the previous case we write D\D1 as

a union of the sets:

Ã =

{
ζ ∈ D :

1+ r0

2
< |ζ |< 1

}
,

B̃ =

{
ζ ∈ D : r1 ≤ |ζ | ≤

1+ r0

2

}
.

Then repeting the argument applied in Case 1, we get the necessary result.
Thus g2(z) ∈ H(D1), from which it follows that

∂g2(z)
∂ z

≡ 0, z ∈ D1.

This together with (24) implies that g ∈Ck(D1) and

∂g(z)
∂ z
≡ v(z), z ∈ D1.

The proof is complete.

R e m a r k 1. When β = α,ϕ = γ, p = 2 and v satisfies (18) with α instead of
α +1, Theorem 5 follows from [11], where the case of polydisc was considered.
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MIAVOR 
RJANOWM ∂-HAVASARMAN K
�AYIN LOW
OWMNER

Hodva�owm ditarkvowm � ∂g(z)/∂ z = v(z) havasarowm� D miavor

�rjanowm: Ck dasi (k = 1,2,3, . . . ,∞) ayn v fownkcianeri hamar, oronq pat-
kanowm en Lp{k��ayin daserin (1 ≤ p < ∞) |z|2γ(1− |z|2ρ)α , z ∈ D, tipi
k��ayin fownkciayov, ka�owcvowm � low�owmneri gβ �ntaniq (β{n` kompleqs

parametr �):

Ф. В. АЙРАПЕТЯН

ВЕСОВЫЕ РЕШЕНИЯ ∂ -УРАВНЕНИЯ В ЕДИНИЧНОМ КРУГЕ

В статье рассматривается уравнение ∂g(z)/∂ z = v(z) в единичном
круге D. Для Ck-функций v (k = 1,2,3, . . . ,∞) из весовых Lp-классов
(1≤ p<∞) с весовой функцией типа |z|2γ(1−|z|2ρ)α , z∈D, строится семейство
решений gβ (β − комплексный параметр).
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