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ON WEIGHTED SOLUTIONS OF 9-EQUATION IN THE UNIT DISC
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In the paper an equation dg(z)/dZ = v(z) is considered in the unit disc D.
For Ck-functions v (k = 1,2,3,...,00) from weighted LP-classes (1 < p < o)
with weight functions of the type |z[*(1— |z|??)%, z € D, a family gg of solutions
is constructed (f is a complex parameter).
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Introduction. In [1] a generalization of the famous Cauchy integral formula for
smooth functions was presented. More exactly, if € is a bounded domain with piece-
wise smooth boundary and f € C!(Q), then the following formula holds (so-called
Cauchy—Green formula):
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where m is two-dimensional Lebesgue measure in the complex plane. Recall that
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is the Cauchy—Riemann operator and it annihilates holomorphic functions,
d
J;(f) =0 if f is holomorphic in Q. As the first summand in (1) is
holomorphic in , we can conclude that a solution of so-called d-equation
d
ga(;) =v(z), zeQ, 3)

with given v € C'(Q) and unknown g € C'() can be found in the form

g(z) = —jlrg/ E(E)de(g), zeQ. @)
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The Eq. (3) plays an important role in complex analysis (especially in several
complex variables). Nevertheless, in one complex variable it also had important
applications in the corona problem solution and approximation theory.

Recall the following results, concerning the solution of Eq. (3).

Theorem 1. (Theorem 1.2.2, [2]). If Q C C is an open bounded set,
k=1,2,3,...,00and v € CK(Q), i.e. v € CXQ) and v has a compact support in
Q, then the function g defined by the formula (4) belongs to C*(Q) and satisfies
the Eq. (3).

Theorem 2. (Proposition 16.3.2, [3]; Theorem 1.1.3, [4]). If Q C C
is an open bounded set, k = 1,2,3,....00 and v € CK(Q) NL=(Q) or v € CK(Q) N
L' (Q), then the function g defined by the formula (4) belongs to C*(Q) and satisfies
the Eq. (3). Moreover, we have

lglles < (diam())* - V]l or |lglly < (diam(€))-[[V]1- o)

In [5], where the cases of the unit ball B, C C,, and the unit polydisc U" C C,
were considered, it was given the following generalization of (1) for the unit disc

D={{:|{| <1} (Ref >—1and f € C'(D)):
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where the first summand of (6) is holomorphlc in z € D that was first appeared in [0, 7].
Hence, similar to (4), the second summand of (6) can serve as a formula for a solution

of d-equation (3):
’2 B+1
:_//C—Z<l—zé'> dm(¢), zeD. (7)

Namely, the following assertion holds:

Theorem 3. Assume that 1 < p < 4o, o« > —1 and Ref} > a. If

veCl(D)NLE (D), then the function gg defined by the formula () belongs to

C!(D) N LY(D) and satisfies the equation (3). Moreover;, we have

18 p.cc < const(a, B)[[V[lp,es1- @)

This Theorem is a consequence of a corresponding multidimensional result
of [5]. In its formulation the following notations are used:

Il = // (1= 1) %am(©).

Lo(D) = {f(C)»C e Ifllpa < oo
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Note that integral representations of type (6) obtained in [5] for the unit ball
B,, were generalized in [8] (for the matrix unit disc) and in [9] (where very general
weight functions were considered for the unit ball B,,).

Further generalizations of the formula (6) for the unit disc ID were obtained
in [10—13] (under various assumptions on f(¢) and 9 f({)/d¢) and can be written as
follows:

/ F(0)S5.9.9( (1= 1221 PPdm()

2
- // —Qppo(@l)am(). €D, ©)

where the kernels S and Q were represented in an explicit (integral or series) form.

In the present paper we show (Theorems 4 and 5) that the second part of (9)
generates a family of solutions of d-equation (3) in ID.

Preliminaries. In this section we present several formulas and facts
from [10] and [13].

Assume that p > 0, ¢ > —1 and y > —1. For 1 < p < 400 and arbitrary
complex-valued measurable function f(§), { € D, put

MEp (1) = [[ 1RO (=15 ¢ am(E) (10
D
and define
LﬁpY(D):{f(g)aceﬂ):Mg,p,y(f) < oo} (11)
Evidently, LY, , (D) C L, py(D), 1 < p < +oo (see Proposition 3.3 in [14]).

Assume that Ref3 > —1, Re¢p > —1 and u = (¢ + 1)/p. For arbitrary z € D
and § € D the kernel Qg , »(2;§) = O(z; ) is defined as follows:

4%

Oppozl)=1+ (;— C)Pl o (u+ﬁ . + / )P 19 ay
C (ﬁ+ )k:O F<u+ 0
k I9%&
. ¢ mr(“+ﬁ+l+p) 2 Btk
= +CF(B+1) p o (I =x)Px""P " dx, (12)
k=0 F</.H—5) 0
where ¢ € D\{0} and
O p,p(z0)=1. (13)
It was proved in the Section 2.2 in [10], that in the special case p =1 and ¢ =0

+1
—1¢ l 2 ) B
1-2zC
The following assertions describe a part of the properties of the introduced
kernel.

the kernel Q takes the form (
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Proposition 1. The kernel Q(z;§) is well-defined for z € D and { € D
by (12) and (13). Moreover, Q(z;€) is continuous in D\{0} for a fixed z and
holomorphic in D for a fixed §.

1
Proposition 2. Suppose 0 < |{| < 5 Then

oy ot — ey 1y const(B,p,@) JICPROTE zF£0,
10(z:€) = Q(z:0)[ = [Q(z: €) I‘S(I—VD&M{MFR”’”, .20, (14)
Proposition 3. Ler (1+|z])/2 <|{| <1, then
1— 2p Ref+1
00| < cons(p.p.0) L") (15

(l . |Z‘)R€ﬁ+2
Weighted Solutions of d-equation in D. Let p > 0, Reff > —1, Rep > —1

and 4 = (¢ +1)/p. Assume also that Qg , »(z:C) = Q(z: ) is defined by (12), (13)
and for a function v({), { € D, put formally

8p0(c //c 0 (@ 0)m(C), zED. 16)

Theorem 4. IfveCK(D), k=1,2,3,... 00, then g(z) = gp p.o(2) is of class
CH(D) and satisfies the d-equation (3).

Proof. Obviously, |[v({)| <M, { € D. According to Propositions 1 and 2 the
integral of (16) is convergent for every z € D, i.e. the function g is well-defined. Using
the formulas (12) and (13), we can write g(z) in an expanded form:

_ L) - 1 p
(2) = n{/é—zd (C)+7r r(B+1)
45

) (TSR R P
s k=0 ¢ 0

I(u+k/p)

_Lrrv(©) 1 p
__né/g—zdm@*n'r(ﬁﬂ)

kzo (uiﬁii/;k/p // ck+1/ )P 1? Hdidm(¢) |,

where the change of the order of the summation and the integration is justified by the
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following chain of inequalities:

y T tBrlik/p), o)
= Tu+k/p) C"*
L(u+B+1+k/p) 2l
<y ()] 7l
=l T(u+k/p) IC!
D(k+Rep+2) |z |C*
< M const(B,p, ¢ .
Boo X e
_const - I'(k+Ref3 +2) k
__const 1 const
61 (1= 2] [S)ReP+2 = L] (1 — |z])ReP+2
In the estimation above we use the following consequence of the Stirling’s formula:

ir(ﬂ +R)i = RRe,LLfRev
IT(v+R)| ’

1 CZk

cL' (D).

R — oo,

Thus

(Z):_;é/g(—oz +Zcz_g1 )+g2(z), zeD. (17)

According to Theorem 1, we have g € C¥(D) and dgi(z)/dz = v(2),
z € D. Further, since g»(z) is representable by a power series in I, g, is holo-
morphic in D, i.e. dg2(z)/9Z =0, z € D. Hence, g € C¥(D) and g satisfies the Eq. (3).
The proof is complete. O

Theorem 5. Assume that oo > —1, ¥y > —1, 1 < p < +o, Reff > «
and Re@ > 7v. Also let

v(§) € Ck(]D)) le(iH-l 0,y

(D) (18)
for k=1,2,3,...,00. Then g(z) = gp p.o(2) is of class CX(D) and satisfies the
g-equation 3).

Proof. First of all let’s prove that under the assumptions of the theorem
the integral (16) is convergent for every z € D. Close to the boundary, when
(1+z])/2 <|&] < 1, we have (due to Proposition 3):

M [ < 2N const(Bp,9)(1— [£22)88+
[ e e e R ()

< const(B,p,9,2)[v(&)I(1—[C1P)* 1. (19)

Hence, in view of (18) and the fact that Ly (D) C Ly ,,(D),1 < p < oo,
the convergence near the boundary was proved.

Now let’s see the convergence in the neighborhood of z, when z # 0.
Since 1/({ — z) has integrable singularity and since v and Q are bounded near z
then the convergence is obvious.
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Finally, we have to show the convergence in the neighborhood of 0.
We have two cases here.
Case 1. z # 0, then in view of Proposition 2 we have for 0 < |{]| < |z|/2:

) 2M s 2M tp,p, o, e
MONRE O]  2M [0(z:8)]  2M const(B,p, ¢,2) (14 [¢PReos)
[Spd 2| 2|
< 2 M const(B.p, ¢,2)
B 2l
where M = max{[v(¢)| : [C] <z[/2}.
Case 2. z = 0, then in view of Proposition 2 we have for 0 < |{] < 1/2:

VOINC0:8)] _ 2 M const(B,p, )
I - I

Thus integral (16) is convergent, i.e. g(z) is well-defined for every z € . We have to
d
show that g € C¥(D) and g(z)
Z

to prove them in a neighborhood of an arbitrary point zg € D (we intend to use the
technique applied in the proof of Theorem 1.2.2 in [2]).

Let’stake 0 < r; <rysuchthat Dy ={|{ —z0| <r} C Dy, ={|{ — 20| <} C
D. In addition, if zgp # 0, we assume that r; < |z9|/2 and if zo = 0 we assume that
r1 < 1/2. Obviously, there exists a function y € C°(ID) such that

(1P e Lt (0 <[¢] < 2l/2),

(L+[S7) € L'(0< (¢ <1)2).

=v(z), z € D. As these properties are local, it suffices

vip, =1, (20)
Vlp\p, =0, 21
Vlp,\p, €[0,1]. (22)

Hence we can write:

)= [ " o tian)

D
- é/ MO oagpins) = 0@+, zeD. @)

From Theorem 4 we get that g;(z) € C¥(ID) (hence g (z) € C¥(Dy)) and

28— 1(2) v

Since (&) =1, when { € Dy, we can write

=1 [["N Y o gan@), zen e
D\D

v(z), z€Dy. (24)

We intend to show that g, € H(IDy), i.e. g is holomorphic in ;. To this
1
and Q(z;{) are
{—z

end first let’s note that for a fixed { € D\, the kernels
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holomorphic with respect to z € ;. Consequently, it is sufficient to find a function
W(C) € L'(D\Dy) such that

MO oo < wi) 26)

uniformly with respect to § € D\ID; and z with |z —zo| < rp < ry.

Obviously, 0 < 1—y(g) <1, < . Hence, we have to estimate

=z " ri—n
V(&I
Case 1. zo # 0. Put A = |z0| +ro < 1. Let’s split D\D; into 3 disjoint parts:

a={tepwi TR <ig <1},

:{CED\DI:CKQ}

1+|z\<1+)L

If |z— 20| < rpand { € A, then |z| < |z0| +r0 = A. Hence 7

Then according to Proposition 3 we have

06 0)1 < TR (1-1P7) .

Hence

+1
M(E)I10(z: )] < const(B,p, 9, 4) V()] (1—=1¢1)" =wi(g).
In view of (18) we have W; € L'(A).
If |z— z0| < rp and { € B, then according to Proposition 2

0(z:8)| <1+ Wm&wﬂ

VONQE )| < W(E)I(1+const(B, p, 9, A)[CP7*) = Wa(C)

and W> € L'(B) as v({) is bounded on {{ € D\D; : [{| < 1}
If |z—z0| < rp and § € C, then note that

1 1+ A
{(Z,C) tlz—z0l <rp and = < 1€ < 2}

is a compact set in the space C2. At the same time, as it follows from the proof of
Proposition 1 of [13] the kernel Q(z; {) is a continuous function in variables z € D
and { € D\{0}. Consequently, |Q(z;{)| is uniformly bounded in { € C and z with
|z—2z0] < ro. Also |[v(&)| is uniformly bounded in § € C. Thus |v(§)||Q(z; §)| < M; =
Ws(&) € L(C). Tt remains to put

wi(§), CeA,
W()={M(8), {eB,
W3(C), CEC,
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and note that W evidently belongs to L' (D\D).
Case 2. zp = 0. Hence |z| < rp. Similar to the previous case we write D\D; as

a union of the sets:
14+ ro

X:{CGD: <|C|<1},

~ 1
B:{CeID):r1§|C|§ Z”’}.

Then repeting the argument applied in Case 1, we get the necessary result.
Thus g2(z) € H(D)), from which it follows that

3gazz(z) =0, z€ Dq.
This together with (24) implies that g € C¥(ID;) and
ag(zz) =v(z), zeD.
The proof is complete. O

Remark 1. When B = a,¢ =vy,p =2 and v satisfies (18) with « instead of
a+ 1, Theorem 5 follows from [1 1], where the case of polydisc was considered.
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b. U \UBLUMNES3UL

UhWJINL SPQULNFU 9-SUMUUUNUUL UGNUShL LAFSNFULEN

Snnwdnud phyppupyymd £ dg(z) /97 = v(z) hwjwuwpnuip D dhwynp

opowtimu: C* nuup (k= 1,2,3,...,00) wyl v $mblghwbtiph hundwp, npniip wjug-
Quind o LP-pnughtl quutiphtn (1 < p < o) [z]2(1 —|2)*°)%, z € D, phwh
Yonwyhtt $nibijghuyny, Gunmgymd t mdnudbtiph gg plypubhp (B-U° Yndwytipu
wwpwdtpp E):

®. B. AIPAIIETSIH

BECOBBIE PEIIEHIA d-YPABHEHIA B EAMHITYHOM KPYI'E

B crarpe paccmarpuBaercsi ypaBHeHue dg(z)/dz = v(z) B eamHUIHOM

kpyre D. Jna Ct-dbymkumit v (k = 1,2,3,...,00) u3 Becosbx LP-Kaccon
(1< p <o) ¢ Becosoit dbynximeit Tuma |z|>Y(1—|z|?)%, z € D, crpounTca cemeiicTBO

pemenuii gg (B — KOMIUIEKCHBII Tapamerp).
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