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In this paper several problems related to the implementation of the method
for the approximate calculation of distance between regular events for multitape
finite automata are considered and resolved. An algorithm of matching for the
considered regular expressions is suggested and results of the algorithm applica-
tion to some specific regular expressions are adduced. The proposed method can
be used not only for the mentioned implementation, but also separately.
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Introduction. Regular expressions have a broad variety of applications and
are supported in many programming languages. It is natural that the consideration of
commutativity between some letters may additionally increase the range of application
of regular expressions.

Partially commutativity in the input alphabet is naturally related to the multitape
finite automata (MFA) [ 1], for which any two letters of different tapes are commutative
with each other, and any two letters of the same tape are not commutative.

A new representation of languages for multitape finite automata (MFA), based
on a special binary coding of elements in a free partially commutative semigroup were
considered in [2]. This coding was also used for the solution of several problems in
the theory of automata, which were previously open [2—4].

Regular expressions and events, a metric space of regular events for MFA, a
problems of multitape finite automaton analysis resulting in a corresponding regular
expression as well as synthesis of a multitape finite automation from a given regular
expression for MFA were considered in [5]. We note that initially the notion of a
metric space of regular events for one-tape automata was introduced in [6].
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It is well-known that the equivalence problem for MFA is unsolvable [1], and it
follows from the above that for the introduced metric determination of the distance
between two regular expressions is unsolvable too, because otherwise it will be
possible to determine the equivalence of two MFA via checking whether the distance
between them is equal to 0.

An attempt of proposing an approximate method for calculating the distance
between the regular events for a multitape automata was done in [7]. The distance
was based on the Euclidean distance, due to an isomorphism between elements of a
free partially commutative semigroup and a sub-semigroup of R". In this paper, we
investigate the approximate method of calculating the distance proposed in [5]. This
metric is based on a new characterization of commutation classes of a free partially
commutative semigroup.

The implementation in C++ emphasizes the parts of the method, which essen-
tially impact its complexity. A justification of the provided solutions is discussed.
Results of some runs of the implementation are adduced too.

Both modules for distance calculation between two given regular expressions
and for matching an input string with a given regular expression along with test results
on the provided benchmark are available from https://github.com/HayMurad/
multitape_regex.

The paper comprises of 5 sections. The definitions of free partially commuta-
tive semigroups, regular expressions and regular events over those semigroups, and
multitape finite automata are formulated in Section 2. Extensions on multitape case
of some already known metrics for languages accepted by one-tape automata, and a
new metric are considered in Section 3. The algorithm for calculating the approximate
distance for given regular events in a free partially commutative semigroup and the
algorithm for string matching for regular expressions are represented in Section 4.
Final conclusions are given in Section 5.

Preliminaries. Recall some definitions from [5].

If X is an alphabet, then the set of all words in the alphabet X, including the
empty word, will be denoted by X*, and the set of all n-element tuples of words will
be denoted by (X")*.

Let G be a semigroup with a unit, generated by the set of generators
Y = {y1,y2,-.-,yn}. G is called a free partially commutative semigroup, if it is
defined by a finite set of relations of type y;y; = y;yi.

Let K : Y* — ({0,1}")" be a homomorphism on the set Fy, which maps words
from Y* to n-element vectors in the binary alphabet {0, 1}. The homomorphism K
over the set of symbols of the set Fy is defined by the equation:

L, i=},
K(yi;) = (a1i,...,an;), where aij =N ¢€ YiVj=DYjYi,
0, yiyj #yyi

At the same time K(e) = (e, ... ,e).
K(yiyj), i # j, is defined as a left concatenation:
K(yiyj) = (a1jaiis- - ., anjan;).
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The homomorphism K can be considered as a mapping not only on Y*, but also
on the free partially commutative semigroup G.

Any element in K(G) can be represented in the form &k;, ...k;,, where Vj
ki; € K(Y). As an element may have multiple such representations, we define an
equivalence relation px on K(Y)*, namely, if p,q € K(Y)*, then ppgq iff p and ¢
are the representations of the same element in K(G). The equivalence class of p is
denoted by [p].

For a free partially commutative semigroup G with the set of generators Y, a
regular event and a regular expression over K(Y') are defined as follows:

. 0 (empty set) is a regular event in K(Y).
.E={le,...,e]} is aregular event in K(Y).
.Yy e Y, {[K(y)]} is a regular event in K(Y).
. If P and Q are regular events in K(Y), then so are:
(@) P+Q=PUQ;
(b) PQ = {[s]|s = pq,[p] € P,[q] € O}, where pq is the concatenation of p
and ¢ as defined above;

(c) P*= |J P", where P = E, P" = PP" ! forn > 1.
n>0
5. There are no any other regular events in K(Y).

B~ W N =

. 0 is a regular expression, denoting the regular event 0.

.K(e) = (e,...,e) is a regular expression, denoting the regular event £.

.Yy € Y,K(y) is a regular expression, denoting the regular event {[K(y)]}.

. If p and q are regular expressions in K(Y), denoting regular events P and Q

A W N =

correspondingly, then so are

(a) p+ g, denoting the regular event P+ Q;

(b) pq, denoting the regular event PQ;

(c) p* = U p", where p® = K(e), p" = pp"~! for n > 1 denoting the
n>0

regular_event P*.

5. There are no any other regular expressions in K(Y).

This definition of regular event differs from the known definition of regular
events by the definition of "concatenation" operation, and by being defined as a set of
equivalence classes. Further we will simply say a word p belongs to the regular event
S, if [p] € S.

Two models of multitape finite automata are necessary for consideration.

Let Q be a finite set of states, X be an input alphabet, § : Q x X — 2¢ be the
transition function, gy € Q be the initial state and F C Q is the set of final states.

If X can be divided into disjoint, ordered subsets X = X; U...UX, such that
XiNX;=0and Vx,x' (x€X;,x' € X;(i# j),xx' =x'x), then it is called a partially
colrflinutative alphabet. Each subset X; corresponds to i-th tape. Further, in this paper
we will only consider partially commutative alphabets.
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Definition 1. (Rabin-Scott model [1]). Let T : Q — {1,...,n} be a tape
function, which associates each state from Q with a certain tape. An n-tape

n
automaton is called a tuple A = (Q,T,X,8,q0,F), where Q = \J Qi such that
i=1
0i={qlqe 0. T(q)=i}Vi=1,....n

Definition 2. (Mixed-state model [8]). An n-tape automaton is called a
tuple A = (0,X,0,q0,F).

The mixed-state model differs from the classical Rabin-Scott model by not
bounding each state to a specific tape.

An automaton is called deterministic in Rabin-Scott model (DMFA), if
Vi, Vq € Qi, x € X; |0 (q,x)| < 1, otherwise, it is called nondeterministic (NMFA).

An automaton in Mixed-state model is called deterministic (DMFA-MSM),
if Vg € Q, x € X |6(q,x)| <1, and there does not exist x; € X;, x; € Xj, i # J,
such that |8 (¢,x;)| > 0 and |8 (g,x;)| > 0 simultaneously. Otherwise, it is called
nondeterministic (NMFA-MSM).

Metric Spaces for Free Partially Commutative Semigroups. Below, we
will consider extensions of some known metrics on regular expressions for regular
languages over free partially commutative semigroup. First we consider the metric
proposed by Bodnarchuk [6]. For a word p its length is denoted by d(p). Let
E; and E, be regular events in the classical algebra of events. The Bodnarchuk
distance between E; and E, is defined as the number p(E},E;) = 2*d(E1AE2), where
d(E) = min{d(r)|r € E} and E|AE; is the symmetric set difference of the regular
events E1 and E».

The Bodnarchuk metric is a complete metric for regular languages over free
partially commutative semigroup, but it does not tell much about the distance between
two regular events and it is not a good suit for measuring difference between them.

Next, we consider the edit distance. In [9] it was extended to the distance of two
regular languages, and similarly can be extended over a free partially commutative
semigroup. To be more specific, Levenshtein distance will be used [10].

LetY ={y1,y2,...,ym} be a partially commutative alphabet (Y =Y, U...UY,),
and G be a free partially commutative semigroup generated from Y.

The longest sub-word y, Ym, - - - ym, of the word g € G, where y,,; € ¥;,Vj, is
called the projection of the word g on the subset ¥}, and will be denoted as oy, (g).

For g1,g2 € G we will denote ED(g1,82) = \/n%—i—n% +...+n? as the edit
distance of the words g; and g, where #; is the edit distance of the words oy,(g;) and
oy,(82)-

Let E; and E; be regular events over a free partially commutative semigroup G.

ED(E|,E;) = min (ED(ry,ry)) is called the edit distance between E| and E,.
ri€Ey ,VQEEZ

The downside of the edit distance is that it disregards the actual difference of
the regular events and focuses on the two closest words.

A new metric was introduced in [5] to address these drawbacks. Let G be a
free partially commutative semigroup with generators Y = yy,ys,...,yr and g1,82 € G.
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Cy,(g;) is the vector of occurrences of letter y; in g; [5]. As these vectors may have
different lengths, denote by C;,(g1) and C},(g2) the same vectors with -1-s added to
the one having smaller length. Define the distance between g1, g» € G as follows:

d(g1,82) = | (lI65, (60 =€y, g2 - 1€, (e1) ~ € 2], ) |

where ||v||, is the L, norm of the vector.

Let E1 and E, be regular events over a free partially commutative semigroup.

dy distance of E| and E; is defined by
dy(E1,E;) = max{ sup inf d(r,r), sup inf d(r;,r2)}.
reE €k neE, NEE

The problem of equivalence for multitape finite automata is generally not
solvable [1], hence the problem of whether dy (E;, E>) = 0 is not solvable. This leads
to the fact, that the calculation of dy is unsolvable, as well.

In the next section an algorithm for the approximate calculation of dy is given.

Algorithm for Approximate Distance Calculation, Implementation and
Benchmark for Matching Algorithm. In this section we present the implemen-
tation of the method for approximate calculation of the difference between two regular
events over a free partially commutative semigroup proposed in [5], mainly focusing
on parts, which require a careful approach.

Recall the approximate method for calculating dy. Let Ry and R, be regular
expressions over a partially commutative alphabet X = XpU...UX,, denoting regular
events E] and E; correspondingly.

1. Construct DMFASs from R; and R5:

(a) construct NMFA-gs from R; and R, using “Thompson’s construction”
(111

(b) transform these NMFA-€s into NMFA-MSMs (A and A») using
“Subset construction” [11];

(c) transform A; and A, into DMFASs using a new tape X, = {€],&,...,&,}.
Denote these DMFAs by A(ID) and AgD), and their starting states by g1
and gy respectively.

27"'7 27

2. Run “Congruence Builder” algorithm [4] passing the union of ASD) and

AgD) as an input automaton.
(a) If 10 and gyp are in the same equivalence class, then dy = 0.

(b) Otherwise, denote by PI(D) and PZ(D) the finite sets of words accepted by

ASD) and AgD), obtained during the execution of “Congruence Builder”.
Continue to the next step.

3. Delete the last words from each tuple in PI(D) and PZ(D), getting sets of n-tuples

of words P; and P> correspondingly.

4. Forevery p € P, \ P, if p is accepted by A,, add the tuple p to P,.

5. Forevery p € P, \ Py, if p is accepted by A, add the tuple p to P;.

6. Calculate the distance dy (P, P,).

Items 4 and 5 need a more detailed approach. In particular, the implementation

of these steps requires an algorithm for matching a word in a given NMFA-MSM.
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The implementation of word matching is given in Algorithm 1. The procedure
MATCH_WORD takes as an argument an NMFA-MSM, a state from which it starts
the matching (initially go) and an n — tuple word.

Algorithm 1 Word matching in NMFA-MSM

1: procedure MATCH_WORD(A,q,t,)
2: A=(0,X,8,q0,F)

3 if Vi{, € t,, t,, is empty then
4 if g € F then
5: return 7rue
6: else
7: return False
8 tapes < {i| 6(q,x) #0,x € X;}
9: found < False
10: for i in tapes do
11: if 1, not empty then
12: tzv =W Wi, ... W,
13: if 6(q,wi,) # 0 then
14: found < MATCH_WORD(A, (q,wi,),
15: (Lt wiy . owp D))
16: if found = True then
17: return 7True
18: return False

Note, that the sequence of steps 1 (a), 1 (b) and Algorithm 1 is an algorithm
for matching a given word in a partially commutative alphabet with a pattern given
as a regular expression over a free partially commutative semigroup. This leads to a
separate algorithm for a string matching in a multitape case.

Let R be a regular expression over a free partially commutative semigroup
and, r be the total number of operators and operands in R. The worst case time of
constructing an NMFA-MSM from R is O(r?2"), however typically the number of
states s in the constructed NMFA-MSM is about 7, so it takes O(r?) time (similar to
the construction of DFA [11]).

The worst case complexity of checking whether an NMFA-MSM accepts an
input string with a length x, by Algorithm 1 is O(n*), where 7 is the number of tapes.
To see, whether the typical results run faster, a benchmark has been created based
on http://openresty.org/misc/re/bench/. The later one is a benchmark for
regular expressions for one tape automata.

An implementation of the algorithm has been written in C++. It finds all
maximal words accepted by an NMFA-MSM from a given string or stream of
characters. The algorithm has been tested on three different files having sizes of
25 Mb, 10 Mb and 10 Kb. For every test the number of matches and algorithm
elapsed time are recorded. The results of benchmark can be viewed in https:
//github.com/HayMurad/multitape_regex/tree/master/test.


http://openresty.org/misc/re/bench/
https://github.com/HayMurad/multitape_regex/tree/master/test
https://github.com/HayMurad/multitape_regex/tree/master/test

78 T. A. GRIGORYAN, M. S. HAYRAPETYAN

Items 1 (c), 3 and 6 are straightforward and do not require further details, and
item 2 is already given in [4].

Algorithm 2 Calculate Approximate dy

1: procedure CALCULATE_APPROXIMATE_DISTANCE(R;,R>,X)

22 AP« BUILD_DMFA(R))

3 AP « BUILD_DMFA(R,)
4  Eq+ CONGRUENCE_BUILDER(A\" UA{”)
5. ifEQ_SET(Eq,q10) = EQ_SET(Eq,qn) then
6: return 0
7: else
8: P, <+ EQ _SET(Eq,q10).Words
9: P, + EQ_SET(Eq,q20)-Words
10: TRIM(P))
11: TRIM(P,)
12 for pin P, \ P, do
13: if MATCH_WORD(A3, q20, p) then
14: P+~ PU {p}
15: for pin P, \ P, do
16: if MATCH_WORD(Ay,q10,p) then
17: P <+~ PU {p}
18: return dy (P, P,)

We proceed to full pseudocode of the algorithm (Algorithm 2) for finding the
approximate distance between regular expressions over a free partially commuta-
tive semigroup. Let R; and R, be regular expressions over a partially commutative
alphabet.

Here in line 2 we construct DMFA AED) for Ry according to steps 1 (a), 1 (b),

1 (¢). Similarly we construct DMFA AgD) for R, in line 3. In line 4, according to

step 2, we run “Congruence Builder” algorithm for the union of AED) and AgD) and
store the resulting equivalence classes in Eq. We check if gjg and ¢y states are in the
same equivalence class in line 5, and if they are we return O as the distance of regular
expressions because they are equivalent. Otherwise in line 8 from Eq. equivalence
classes we retrieve the class that g;o belongs to and store the words that were obtained
during the execution of “Congruence Builder” for that class in P;. Similarly we store
words of equivalence class that gy belongs in P in line 9. The n + 1-tuples of words
are trimmed (lines 10, 11) by removing the last words corresponding to X, tape. This
results in n-tuples of words. Afterwards, we loop over all the words in P; \ P, and
check if given word is accepted by A, automaton (line 13). If there is a match we add
given word into P; (line 14). We do similar check for all the words in P, \ P; in a loop
and add them to Py, if they are accepted by A; in (line 15). Finally, we calculate the
dy distance between P, and P in line 18.
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The implementation of the Algorithm 2 in C++ is given in https://github.
com/HayMurad/multitape_regex/tree/master/src.

Conclusion. In this paper the distance between regular expressions over a free
partially commutative semigroup is considered.

An algorithm is described for the calculation of the approximate distance
between two regular expressions, and as a part of it, an algorithm is proposed for
finding the matches of a given regular expression over a partially commutative alphabet
in the input text. The implementation of the algorithm is done in C++ and the
performance of matching algorithm is checked on a defined benchmark.
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S. W ¢rpanrsuy, UL U NUSLUMES3UL

quLnudNr, MUSUNNFS3ELELh UbQBY, SEAUINLNFERSTL 2UONFU
AUQUUAUNUYEL WJSNUUSLENP SUUUCM SUUUCNGRNF8UL 2HUUG D
uvar ALAFERUWALP SPUTL JrU

Snnudonud phbwplynud b jndynid G0 Jubnbwynp wunpuwhnypbbtph dholt
htinwynpnipjnidp dnipuynp hwpyupuwd dbpnnh hpuubwgdwd htn juyywd
npny fubnhpbtp puqiuduwuybb wyypniwpibph hwdwp: Wowewplymy k
pubupyyuo Juinbwynp wpqpuhwyppmpymbbtph punh hwiwyuwgpuupiwbnipjub
wignphpy b ptipynud Gb npnp hunpniy jutntwynp wpypuwhwjpypnipynibbtph ypuw
wignphpdh fhpundwh wprynibpbtin: Wnwewnlyynn dbpnnn Jupnn L ogyugnpdyty
ng thuyl tpywd hpwjuwiwgdiwb hwdwp, wy; twb wnwbahb:

T. A. TPUTOPAH, M. C. AUPATIETAH

NBMEPEHUE PACCTOAHUA MEZKAY PETVJIAPHBIMW COBBITUAMU
JJId MHOTOJIEHTOYHBIX ABTOMATOB HA OCHOBE HOBOU
XAPAKTEPUCTUKU KJIACCOB 3KBUBAJIEHTHOCTU

B cratbe paccMOTpeHBI U peEIlleHbl HECKOJIBKO IMPODOJIEM, CBA3AHHBIX C
peasnuzarueil MeTo1a TPUOINZKEHHOTO BLIYUCJICHIUS PACCTOTHUS MEXK Y PEryJisp-
HBIMU COOBITUSMU JIJIsI MHOI'OJIEHTOUHBIX KOHEYHBIX aBTOMATOB. [Ipemiaraercs
AJITOPUTM II0JIOOPA CJIOB PACCMATPUBAEMBIX PEIYJISPHBIX BBIPDAYKEHUN U IIPU-
BeJIeHbl PE3YJILTAThl TPUMEHEHUs aJrOpuTMa K HEKOTOPBIM KOHKPETHBIM
PETryJIAPHBIM BBIpaXKeHUAM. [IpeioxKeHHbIii MeTOT MOYKHO HCIOJB30BATh HE
TOJBKO JIJIS YKa3aHHON peain3alinil, HO W OTAEIbHO.
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