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Preliminaries. Let us continue the study of skew-symmetric matrices of odd
order, begun in the article [1]. Consider a skew-symmetric matrix
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0 —Am—1 0 azm
L —dam 0 |
where a; # 0, i = 1,2,...,2m. Recall some points already noted in [I].
There we introduced bidiagonal matrix
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as —day 0
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0
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of the size m x m + 1, as well as matrices

P = pijlom+ixm, pij:{l, ?f I:ZZJ} j=12,....m, 3)
0, if i#2j,
and
1, if j=2i—1,

= [gi; . g = i=12,....m+1. (4
Q [‘bj]m+l><2m+1 ql] {0’ if j752l'—1 ()

It was shown that the matrix A can be written in the form
A= (PBQ)" —PBQ. 5
Then, as it was proved (see Lemma 1 in [1]), the matrix A" is as follows:
At = (Q"BTPT)T — Q"B PT. (6)

Thus the problem of finding the Moore—Penrose inverse for the matrix A from
(1) is reduced to a similar problem for the matrix B given in (2).

To calculate the Moore—Penrose inverse of the matrix B, we use the following
well-known formula:

B" = lim (B"B+¢€l,, ) 'B’, (7)
£—+0

where I,,1 is the identity matrix of order m + 1 (see [2], for instance). First we find
the inverse matrix (BTB + &l )*1. Next, we reveal how the elements of the matrix
(B"B+¢l,,11)"'B” depend on the parameter €. Then, according to the equality (7),
passing to the limit as € — +0, we arrive at closed form expressions for the elements
of the matrix B™.

Thus the first problem that arise is the inversion of nonsingular tridiagonal
symmetric matrix

B'Bt el =
[ a?+¢ —aya i
1 142
—ayap a%+a%+8 —asay 0
' . (8)
0 o 2 2 o
aym—3aym—2 a5, ,+a;, |+E& Aom—1A2m
2
L —Aom—-142m ar, + £

To obtain the inverse matrix (B B+ €l,,11) " = [xij(€)]m+1xm+1, let us take
advantage of a computational procedure developed in [3]. As applied to matrix (8),
this procedure is as follows.

Procedure Inverse (B B+ €l,1)"".

1. Calculate quantities f;, g;, p and q:

ﬁ:_a%172+a%171+8’ i:2737"'7m7 (9)
azi-302i-2
14y

= L i=2.3,....m, (10)
azi—3ai—2
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2 2
aj+é& a, —+ &

p=—">"—, g=—"2—. (11)
aap Am—1A2m

2. Calculate recursively quantities L; :
‘u’m+1 = 17 ‘u’m = —dq, (12)
Wi = —fir1lit1 — 8it1Miv2, i=m—1m—=2,... 1.

3. Calculate recursively quantities Vv; :

V1:1, V) =—p,

Vi=—(Viea+ fic1Vie1)/8i—1, i=3,4,....m+1. (3)
4. Calculate quantity ¢ :
t=[(a+e)u —araruo) " (14)
5. Calculate the upper triangular part of the matrix (B” B+ ¢&l,1) "' :
xij(e)=tujvy, i=12,...,5, j=12,....m+1. (15)
6. Set the lower triangular part of the matrix (BTB + 8Im+1)_1 :
xij(e) =xji(e), i=j+1,j+2,....m+1, j=12,... m. (16)

End Procedure.

In accordance with our plan, let us carry out a more detailed study of the
quantities successively computed in the procedure Inverse (BB + €l,.,1)"!.
We are interested in how these quantities depend on the parameter €.

Some Auxiliary Formulas and Relations.

o  The quantities f; (2 <i<m), p and q from (9) and (11).

We set
o ° a5yt a3
fi=fi+toe, i=23,...,m, where f=——"*—="— o=——— (17)
a2i—-342i-2 a2i-342i-2
o o 1
p =P +o €, where P:—ﬂ, a=——- (18)
a ajaz
o o arm 1
q =9 +Qy1€, where = ————, Oy = ———. (19)
am—1 A2m—12m
o The quantities W; (1 <i<m—+1) from (12).
Lemma 1. The quantities |; can be represented as
Hm+1 :uerl +Yn+1€,  Hm =Hy +Yn€, (20)
Hi=M; +%e+0(e?), 1<i<m-—1,
where the quantities ﬁ,- and v; satisfy the following recurrence relations:
o 1 o _ o
o= o o=t @)
Hi=— fipiMiv1 —git1 Hita, i=m—1m—2,...,1,
and
Yim 1:07 Ym = —Op+1,
=1 + 22)

o]
Yi=—fig1 Yirl —&it1 Vi — Qi1 Mgy, i=m—1m—=2,... 1.
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Proof. Since W,y =1 (see (12)), then we set ﬁm+1: 1, Ypy1 = 0.

Further, y,, = —¢g. According to (19), we can take H,= — 4, Yy = — Q1.
For indices in the range 1 <i < m — 1, required representations (20) and recurrence
relations (21), (22) can be readily derived by induction from relations (12), taking into

account (17). ]
Let us introduce the notation
a
=2 s=12,....m. (23)
azs—1

Additionally, we set rog = 141 = 1.

The quantities 1; computed by recursion (21), can be written in a closed form.

Lemma 2. The following equalities hold:

o m
wi=I]re i=12,...,m+1. (24)
s=i

Proof. First, the value ﬁerl: 1 corresponds to the record (24).
Then, as follows from (21) and (19),

° ° Aom
Hp=—4=

=r,.
arm—1

Further reasonings are carried out by induction. Using expressions (10), (17)

and proceeding from (21), for the values i =m—1,m—2,...,1 we get that
2 2 m m
° ay; +ay; A2+ 142;
u, = 2i 2i+1 ro_ 2i+1U2i4-2 H re

K
azi—14; s=it1 azi—14; S=it2

2 .2
_ ay;+ay..;  airiar 1 4 T o
= - — ) II n=ri [T n=TI1I"
s=i

@Qi—-142; @i-142i  Ti+1 | (i3 s=it1

which completes the proof. O

The next assertion is a simple consequence of formula (24).

Corollary 1. The following relations hold:

o o

I"L[:riui+1) i:m’m*l,...,l. (25)

Below we need some formulas related to the quantities 9%, 1 <i <m+1,
defined in (22). Consider the quantities

RiE%—Fi’)/i+1, i:1,2,...,m. (26)

Lemma 3. The following relations hold:

14 r; o

Ru=—>-, Ri=— (a§i+1R,-+1+u,-H>, i=m—1m—2,....1. (27
a as.

2m 2i

Proof. As follows from (22) and (19),

T,
Ry = Y — Tm¥Ym+1 = Y = —Oy1 = Tm (28)
a2m
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Next, from relation (22) (for i = m — 1), taking into account equality (28),
we have

Ruy1 = ’}/m—l_rm—l'}/m:_(fm +rm—l)%11_am Ky
+rm_ ¢} Vo e}
= —0y MRm"i' Uy | = zmil (a%m—lRm"i_ ”m) 5
" Bm—2
that is,
Fm—1 ©
Ry 1= 2L (aﬁmflzemju um) . (29)

Bm—2

Let 1 <i<m—2. From relations (22), using expressions (10) and (17),
we obtain

Ri = Yi—ri¥is1=— fig1 Yir1 — it1Yir2 — Ot Mg
1 2 O rl 2 o
= {”i“2i+1(7’i+1 —rig1Yit2) +1i ﬂi+1} = <azl‘+1Ri+1+ Hi+1) .
@i @i
Thus, in conjunction with (28) and (29), we arrive to the relations (27). ]
Lemma 4. For the quantities R; defined in (26), the expressions

.oom k m
Ri:r;.Z(H 1><Hrs>, i=1,2,....m (30)

Ay k=i \s=it1"s s=k+1
are valid.

Proof. Itis easy to verify the validity of the assertion by substituting expres-
sions (30) into recurrence relations (27). L]

o The quantities v; (1 <i<m—+1) from (13).
Lemma 5. The quantities v; can be represented as

(e} (o]
VI =V| +01E, Vo =V; +OE,

° (31)
V=V, +8e+0(?), 1<i<m—1,
where the quantities \3,- and &; satisfy the following recurrence relations:
Vi=1, Vo= —D,
LT, (32)
vi:_(fiflvi—l +vi—2)/gi—17 i:3747"-7m+17
and
6=0,86=-w,
(33)

Oi=—(fi_1 6i1+ 02+ 0y \31'—1)/81‘—1, i=3,4,....m+1.

Proof. Since vi =1 (see (13)) then we set \31: 1, & = 0. Further, v, = —p.
According to (18), we take \32: — l%, 0, = —oy. Forindices in the range 1 <i<m—1,
required representations (31) and recurrence relations (32),(33) are easily derived by
induction from the relations (13), taking into account (17). ]
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[}
The quantities v; computed by recursion (32), can be written in a closed form.

Lemma 6. The following equalities hold:

vie [, i=1,2,..,m+1 (34)

Proof. Note, that the value \31 = 1 conforms to record (34). Next, as follows

from (32) and (18),
o o qap 1
a
Further reasonings are carried out by induction. Proceeding from (32) and using

expressions (10), (17), for the values i = 3,4,...,m+ 1 we obtain that
o Wy gt @311 asaal3 1

ri-3a2i—2 Vs A2i-3A2i—2 ¢ | Ts

_ (a%zwx +a3;_4 _ @i-si-g 2) ﬁl 1 ﬁl :ﬁl

a2i-342i-2 a2i—342i-2 s=1 s Ti-159Ts  7s
O
The next statement is a simple consequence of the formula (34).
Corollary 2. The following relations hold:
\3,-“:%\3,, i=1,2,....m (35)

1

Let us deduce some formulas related to the quantities &;, 1 <i <m+ 1, defined
in (33). Consider the quantities

S,‘Eri6l‘+1—5l’ i:1,2,...,m. (36)
Lemma 7. The following relations hold:
1 1 1 o )
Si=—, Si=—5— — <a§,.,zsi_1+ v,-_]> Ci=23,...m (37
a Ay Ti-1
Proof. From (33) and (18) we obtain, that
1
Slzr162—61:r152:—r1a1:?. (38)
1

Further, from relation (33) (for i = 3), taking into account expressions (10), (17)
and equality (38), we have

r f 0 o 1 r f 0 o
5 = - |1e2h) s onny L[ nlg neg
g2 82 r g2 g2
1 (a3 l o 11 o
= <§Sl+2V1>=2'<a%S1+V1),
r 613 a3 a3 r
that is,
1 1 2 o
$r=— - (a3si+v1). (39)
a3 ri
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Consider now indices in the range 3 < i < m. From relations (33), using
expressions (10) and (17), we get:

o ° . f. 7
Si = _rf<fi5i+5i—1+o‘i"i>/gi—5i—— 1+rlfl 8— 81
8i 8i
rog 1 o a3 ay_, 1 11 .
— Vi = 2 - S G+ Viei
8 Ti-l a1 azi—1 Ti-1 i1 Ti-1
2
as; 1 1 1 o
= 222 (&= 8i) 5 — Vi
i1 Ti-l ay_y Ti-l
a5 1 1 1 o 1 1, o
= S5 —Sit 53— —Viai= 55— —(a35Si-1+ Vi-1).
i1 Ti-l @iy Ti-l @iy Ti-1
In conjunction with (38) and (39), we arrive to (37). ]

Lemma 8. For the quantities S; defined in (36), the expressions

) i (k=1 i
Si=— Z(I}) <H1>, i=1,2,...,m, (40)

D1 k=1 s=k s

are valid.

Proof. The validity of the assertion is established by substituting expressions
(40) into recurrence relations (37). L]

o The quanty t from (14).

According to representations (20) for the quantities ;, we have:

(af + &) —arazply = aj(By —ri Ha) + (a1 (n — rip)+ Hi)e + O(€7).

Since .131 =n ,&2 (see (25)), then, taking into account (26),

(a% + e —ararplr = (G%RH- .&1)8 + 0(82).
Thus .
t=[(a3Ri+ Hy)e+0(e*)] . 41)

Having revealed the nature of the dependence of the quantities y;, v; and ¢t on
the parameter €, we proceed obtaining formulas for the elements of the matrix B*.
Closed Form Representation of the Matrix B . Let us introduce the matrix

Y(e)= (B"B+el,, 1) 'BT. (42)
Hence, by equality (7), Bt = lim Y (g). If
e—+0

Y(e)= [Yij(g)]erlxma B" = [Wij]m+l><ma
then

Wingl_igrloyU(E), 1<i<m+1,1<j<m. (43)
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As follows from (42) and (2), the elements of the matrix Y (€) are calculated by
the rule

vij(€) = xij(€)azj1 —xijr1(€)az;, 1<i<m+1,1<j<m. (44)
Subject to expressions (15) and (16), for a fixed index jin therange 1 < j <m
we will consider separately two cases: 1 <i<jand j+1<i<m—+1.
o Indices 1 <i<j.
From (44), using expressions (15) for the elements x;;(€), we write
yij(€) = tVi(ljazj—1 — Ujy1a25) =t Viazj—1(Hj — rjfhjt1)-
Taking advantage of representations (20) and (31) of the quantities u; and v;,
respectively, we have
vij(€) = tazi1(vi+8e+0(€%))[(H; +y€+O(€*)) —rj(Kjp1 +7j41€+ O(€))]
= tayj 1 (Vi +8e+0(€%))[(K) —rj Hjv1) + (¥ —r;¥1)€ +O(€7)].
Hence, due to relation (25) and notation (26), we get the equality
vij(€) =tarj 1 €(Vi+8e+O0(€*))(R;+ O(e)).

Then, substituting expression (41) for the quantity ¢ into the right hand side of the
previous equality yields

(Vi +8€ +O(e)) (R, +O(€))
Yij(€) = azj1 5 :
@R+ My +0(¢)

According to (43), by taking limit we find

ViR;
alRi+ M
Further, let us substitute expressions (24),(30) and (34) into the right hand
side of equality (45). As a result, making simple transformations, we arrive at the

expression
i*ll m k 1 m
XTI s
\s=t s J =g o= s s=k+1

m k 1 m ’
ajr Y ([T ) II =
k=0 \s=1"s | \s=k+1

Remark. The denominator of the fraction in the right hand side of equality
(46) is nonzero. This obviously follows from the fact that all terms in the sum have the
same sign.

Wij = azj_1 (45)

i=1,2,...,]. (46)

o Indices j+1<i<m+1.
Using expressions for the elements x; j(e) (see (15) and (16)), from (44) we
have

yij(€) =t Wi(Vjazj—1 — Vjs1az;) = tazj1i(Vj — rjVjs1).
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It follows from representations (20) and (31) that
vij(€) = tagj-1(Ki +%E+O0(?))[(v; +8;€+O0(€%)) = rj(Vjs1 +8j11€ +0(e?))]
= tay 1K +%€+O0(€%)[(V) =1 V1) + (8 = 1;8j41)€ + O(€7)].
Hence, due to relation (35) and notation (36), we obtain the following equality:
vij(€) = —tazj_1 €(H; +Y€ + O(€*))(S; +O(e)).
By substituting expression (41) into the previous equality, we get
K 7€+ O(€2))(S; + O(e
) = —ay. W HEHOE))(S;+0(e))
@R+ 1y +0(¢)
Taking limit as € — +oo, according to (43) we find

HiS;
AR+ M
Further, substituting expressions (24), (30) and (40) into the right hand side of
the equality (47) yields

(f1-) £ (1~ (11}

Wwij = — i=j+1,j+2,...om+1.  (48)

m k 1 m ’
(0
k=0 \s=1"% s=k+1

Combining the above considerations, i.e. having formulas (46) and (48), we
arrive to the following statement.

Wij = —azj_1 (47)

Theorem 1. Let B be an m x m+ 1 bidiagonal matrix given in (2) and a; # 0,
1 <i < 2m. Then the elements of the Moore—Penrose inverse BT = [w; ilmt1xm are as
follows: for 1 < j <m,

()£ (i) (1)

wij = i=1,2,...,] (49)

m k 1 m ’
%12(H>(HFJ
=0 \s=1"s | \s=k11

and

i=j+1,j+2,....m+1,  (50)

N m k 1 m ’
£ (0011
k=0 \s=1 Ts s=k+1

where the quantities rg are defined in (23).

Below is an example to illustrate Theorem 2.
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Example. Consider m x m+ 1 bidiagonal matrix

1 -1
1 -1
B—
1 -1
Calculations by formulas (49) and (50) give the following result:

[ m om—1 m—-2 ... 2 1]

-1 m—1 m—-2 ... 2 1

-1 -2 m-2 ... 2 1

BT = L : : . . : :

m+1 . . . . . .

-1 -2 -3 .. 2 1

-1 -2 -3 ... —m+1 1
| -1 =2 -3 ... —m+1 —m |

An Algorithm to Compute B*. In Theorem 1 we give formulas for the
elements of the matrix B*. In addition, based on the expressions and recurrence
relations obtained above, below we suggest a numerical procedure to compute the
elements of the matrix BT = [W;j|m+1xm-

Procedure MPInverse B*.

1. Input elements ay,ay, . ..,az, of the matrix B (see (2)).

2. Calculate the quantities ry (see (23)):

rS:a2s/a2x71> 521,2,...,1’}’1.

3. Calculate the quantities .lji (see (21) and (25)):

Nm+1:1, ,LL,‘:I’,',UH_], i:m,m—l,...,l.
4. Calculate the quantities \O/i (see (32) and (35)):
\31: 1, \3,‘+1:\3,‘/l’,’, i:1,2,...,m.

5. Calculate the quantities R; (see (27)):

Fm v o .
Ru=—3-, Ri=— (a5 Ris1+Hi1), i=m—1m—2,..,1.
Dom 2i
6. Calculate the quantities S; (see (37)):
1 1 1 o .
S] :727 51272 7(051725‘1_]—’_ Vi_])7 12273’”'7,/”‘
a aziy Ti-1

7. Calculate the quantity
o= a%R 1+ M.
8. Calculate the elements of the matrix B™ (see (45) and (47)):

ViR /o, i=12,...,],
wij =4 ! iRi/ PT ) i=1,2,....m.
—azj_1 M;Sj/o, i=j+1,j+2,....m+1,
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9. Output the matrix BT = [W;j|m+1xm-

End Procedure.

Direct calculations show that the numerical implementation of the procedure
MPInverse B™ requires m” + O(m) arithmetical operations. By this fact, the algorithm
may be considered as an optimal one.

The Elements of the Matrix A* (Odd Order). In this section we will show
that the elements of the matrix B' obtained in Theorem 1 are, in fact, nonzero elements
of the matrix A" for the odd order skew-symmetric matrix A from (1).

Let us return to equalities (5) and (6). We introduce the notation

Q"B PT =V = [voplomrixamit-

Then, according to formula (6),

At =vT vy (51)

We also introduce an intermediate notation

QTB+ =U= [uaj]2m+l><m-

Then V = UPT. Using definitions (3) and (4) of matrices P and Q, respectively,
consider the following four options for the arrangement of elements in rows and
columns of the matrix V.

e Elements at the intersection of odd rows and odd columns of the matrix V.

Fori=1,2,....m+1land j=1,2,... . m+1:

m
V2i-12j-1= ) u2i1kP2j—1k = 0. (52)

k=1
e Elements at the intersection of odd rows and even columns of the matrix V.

Fori=1,2,....m+1land j=1,2,...,m:

m m+1
V2i12j = Z Ui 1kP2jk = U2i—1j = Z qk2i—1Wkj = Wij- (53)
k=1 k=1

o Elements at the intersection of even rows and odd columns of the matrix V.
Fori=1,2,....mand j=1,2,..., m+1:

m
Vaizj—1 = Y uaikpP2j—1k = 0. (54)
k=1
o Elements at the intersection of even rows and even columns of the matrix V.

Fori=1,2,....mand j=1,2,...,m:

m m+1
Vainj = Y UgikPajk = U2ij = Y qk2iwkj = 0. (55)
k=1 k=1

Having expressions (52)—(55) and proceeding from representation (51) of the
matrix A", we arrive at the following statement.

Theorem 2. Let A be a skew-symmetric matrix of order 2m+ 1 given in (1).
It is assumed that a; # 0, 1 < i < 2m. The elements of the Moore—Penrose inverse
AT = [zq8lom+1x2ms1 are as follows:
0i-12j = —Wij, 22j2i-1 =Wjj, i=12,....om+1,j=12,...,m, (56)
where wjj are the elements of the matrix Bt obtained in Theorem 1; the remaining
elements of the matrix A" are equal to zero.
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As a presentation of the structure of matrix A™, below we give the layout of its
elements for the value m = 3:

O —wyq O —wp 0 —wpy O
wi 0wy 0 ws 0wy
0O —wy 0 —wy 0 —wy 0
Af=|wnp 0 wn 0 wp 0 wp
0O —wy3 0 —wip 0 —wiy O
wiz 0wy 0wz 0 wys

| 0 —W41 0 —W42 0 —W43 0 |

Conclusion. Summing up the results obtained in the article, we want to empha-
size two main points. First, we have obtained closed form expressions for the elements
of the Moore—Penrose inverse of odd order real tridiagonal skew-symmetric matrices.
Secondly, on the basis of the obtained formulas and relations, a numerical algorithm
which is optimal in terms of computational costs was constructed.
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‘Lhipyw hnnjwdp unyd wiuwgph twhunpn hwdwpnd hpuwywpuwd [1]
hnnywdh pwpnibwynipynidd £: Wupptin bipluyugywd wpnynibpbtinn yapupbpnud
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OBPAIIIEHNE MVYPA-IIEHPOY3A TPEXIMATOHAJIBHBIX
KOCOCMMMETPUYHBIX MATPUIIL. 11

Hacrositast craThst SIBJIsIeTCs IPOJIOJIZKEHIeM cTarb |1, omybmkoBanHOi
B IIPEJIBIYIIEM HOMepe XKypHaJa. 1IpecraBieHubie 3/1eCh PE3YIbTATHI KACAIOTCS
BBIBO/JIA SIBHBIX BBIPAYKEHUI JIJIsI 3/IeMEHTOB 00parHoit Mmarpuiislt Mypa—Ilerpoysa
B C/IydYae TpeXIMArOHAJBHBIX BEIMECTBEHHBIX KOCOCHMMETPUYHBIX MAaTPHIL
HEYETHOI'o Hopsijka. Ha ocHOBe 1mostydeHHbIX (hOPMYJT TOCTPOEH OITUMAJbHBII,
B CMbIC/IEe 00beMa, BHIUYUCIUTEILHBIX 3aTPAT, YUCACHHDIN aJITOPUTM.



