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ON OPTIMAL STABILIZATION OF PART OF VARIABLES OF
ROTARY MOVEMENT OF A RIGID BODY WITH ONE FIXED POINT
IN THE CASE OF SOPHIA KOVALEVSKAYA

S. G. SHAHINYAN *

Chair of Mechanics, YSU, Armenia

An optimal stabilization problem for part of variables of rotary movement of
arigid body with one fixed point in the Sophia Kovalevskaya’s case is discussed
in this work. The differential equations of motion of the system are given and it
is shown that the system may rotate around Ox with a constant angular velocity.
Taking this motion as unexcited, the differential equations for the corresponding
excited motion were drawn up. Then the system was linearized and a control
action was introduced along one of the generalized coordinates. The optimal
stabilization problem for part of the variables was posed and solved. The graphs
of optimal trajectories and optimal control were constructed.
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Dynamics of the Rigid Body. Consider a rigid body which rotates around a
fixed point. Suppose the body is affected only by its own gravity, and its ellipsoid
of inertia is a squeezed ellipsoid of rotation, which means A = B = 2C. Let as also
assume that the center of mass of the body lays in the central plane of the ellipsoid of
the inertia (Sophia Kovalevskaya’s case) [1]. To examine the dynamics of the body,
we choose a coordinate system OEn{, which is fixed to the earth in such a way that
the O& axis is directed upwards vertically. Let us also fix the axis of the system Oxyz
along the main axis of inertia of the body, so that the Oz axis is directed along the
dynamical symmetry axis of the body and the Oxy plane coincide with the central
plane of the ellipsoid of inertia in such a way that the Ox axis passes through the center
of mass of the body C. Thus, the Oy axis can be positioned uniquely.

Let OC = @ (a;0;0) be the radius vector of C about the point O. Let the
direction cosines of O& axis about the axes Ox, Oy, Oz be denoted as v, P, V3.
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Then the dynamical equations of Euler under the condition A = B = 2C will have the
following form [1]:
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where g = n. Let as add Poisson’s equations to the system (1). We will have
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Egs. (1) and (2) together are a system of ordinary differential equations with 6
variables which are p, g, r, 71, 72, V3.
It is easy to show that the systems (1) and (2) have a solution

p=w=const, g=r=0, n=1, nh=p1=0, (3)

which means that the body can rotate around Ox with a constant angular velocity ®.
Let us construct the system of excited motion of the body by introducing the
following notations:

X1=p—0, Xx2=¢q, Xx3=1, X4=Y—1, x5 =, X6 =.

Thus, we will have:

X1 =0,

Xy = —E(UX%

X3 = —hXs, “4)
X4 =0,

X5 = (DX — X3,

Xg = X2 — OX5.

Here (4) will be linear approximation of differential equations of motion of the
rigid body for the solution (3). In [2] the stability of (3) of the system (1), (2) has been
examined and shown that the solution (3) is unstable [2, 3].
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Optimal Stabilization of Motion. Let us introduce the control action u along
the generalized coordinate x; in (4). Then the system (4) will have the following form:

% =0,
. 1
Xy = _wa3 +u,
X3 = —nxs, (5)
X4 =0,
X5 = X — X3,
\ X6 = xp — (OX5.

Let us split (5) into two separate systems, which are

1
() = ——0x3+u,
X 5 X3 -+ U

X3 = —nxs, (6)
X5 = X6 — X3,
X6 = X2 — (X5,

{ #1=0, %

and

X4 =0.

To check the controllability of (6) , let us use Kalman’s principle [4].
‘We have

1
0 —» 0 0 1
2 0
A=1 0 0 -n 0 [ B= 7
0 -1 0 o 0
1 0 - 0 0
K = {B,AB,A’B,A’B}.
Therefore,
100 O
00 0 —no
=100 0 o
01 0 —w?

It is obvious that detK = n®w? # 0, and hence (6) is fully controllable. Now we
are ready to pose the following

Problem. Find an optimal control action u® such that the solution

x1 =---=x¢ = 0 of (5) becomes asymptotically stable for the variables x;, x3, x5, Xg
(for part of variables) [5], while minimizing the following functional:

J[] :/(uz—i-x%—l—x%—l—x%—i—xé)dt. (8)
0
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We will solve the problem using Lyapunov—Belman’s method [0, 7]. As there
are two parameters in (5), which are n and @, then Lyapunov’s optimal function and
the optimal control action will both be functions containing the same parameters.

P
From o n it is obvious that the value of n depends on the shape of the rigid body

and @ may have different values.
Belman’s expression for the system (6) will have the form

B[]:a—vx2+ an3+ 8Vx5+ an6+u x5+ 43 + 3 +
ox; " dx3 0 dxs dxg 2T
Vv 1 aVv Vv
=9 (—2a)x3+u) e 311)(5—1-(9 5 (wx6 —x3)
8V

a X6 (Xz—wX5)+M +X2+X'; +X5 +X6 (9)

As long as Belman’s expression reaches 0, as its minimum value for the optimal
control value, then we will have

oB oV
— =—+2:=0
dul, o 9x
and hence:
0 1 9V
U =——=—
2 8x2

Substituting the above expression of u° into (9), we will have

g LV vy v vy
2 9xy 3 x> 0x3 5T o X5 @6 a365)63
4 v WV 2, 2,0, 2
+8x6x2 5 6wx5+4<8x2> +x5+x3+x5+x5=0. (10)

For the system (6) let us choose a Lyapunov function in the following form:

1
2 2 2 2
V(XQ,X3,X5,X6) :5 (022x2 + C33X3 + C55X5 + Ce6X6 + 2C23X2X3 + 2C25X2X5

+2626XZX6 + 2C53X5X3 + 2C36X3X6 + 26‘56)65)(6) .

By substituting Lyapunov’s function into (10), we get

1 1
2
—5 03 (€202 + €233 + €25X%5 + C26X6) — ) (€222 + €233 + €25%5 + C26X6)

—nxs(c33x3 4 €23%2 + €35X5 + C36X6)
+(x6 —x3) (C55X5 + C25X2 + C35X3 + C56X6)
+(x2 — a)X5)(666x6 + X2 + C36X3 + C56X5) + x% + x% + xg + xé =0.

In the above equation the coefficients of x3, x3, x2, x2, x2x3, X2Xs, X2X¢, X5X6,
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Xs5x3, X6x3 should be all equal to 0, so we get:

1
—*C%2+C26+1 =0,

4

1 1
—Qia)C23—4C%3—C35+1 :0,
_ZC%S —ncys —Wes6+1 =0,

1
_16%6 +wcsg+1 =0,

1 1
—=cyp — =C2c3—Cc5+c3 =0,

2 2 (1D
— €205 — N3 +c56 — Wz =0,

2
1
—5€22€26 +wcrs+cee =0
1 1
—5 €25 — 523025 —NC33 — C55— OC36 = 0,
1 1
—5 026 — 526023 +wc3s —cse =0,
1
—75C26C25 ~ NC36 + wc3s — wcgs = 0.

The system (11) is a system of algebraic equations for the coefficients c;;,
which contains also the parameters n and @. Let us fix a value for the parameter n
(n =10 and n = 50). Now we can solve the optimal stabilization problem, and for the
optimal Lyapunov function we will have:

0 1 2 2 2 249 )

\% ()C] Z X2y ,x(,) = 5 (022x2 + C33X3 + C55X5 + Ce6X6 + C23X2X3 + C25X2X5
+2c26X0X6 + 2C35X5X3 + 2C36X3X6 + 2656)65)66) ,
as for the optimal control actions we will have:
1’ = — (cao%2 + €23X3 + Ca5%5 + C26X6) - (12)

The minimum value of the functional will be as follows:
1
J[ =3 (20330 + 333530 -+ C55%30 + CoeXgg + 22320330 + 2€25X20%50
+2c26X20X60 + 2€35X50%30 + 2€36X30X60 + 2C56X50X60) 5
where x;o = x;(0), i =2,3,5,6.
For n =10,
cn=-2-107"w°+2-10 3w’ —0.0007®* + 0.00890> — 0.0149®w?
—0.2255mw +9.6116,
c33=5-10""w® —8-10 7w’ +0.0051 w* — 0.1608 > +2.5579w?
—18.178w + 62.659,
cs55=6-10""w® —9.107 w’ +0.0536w* — 1.5505w> + 23.449w>
—171.74® + 498.06,
co6 = —8-10w0+9-10w’ —0.03270* +0.4815w> — 1,8421w?>
—4.12510+35.141,
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23 =8-107%w° —0.00090* +0.0352w> — 0.6605w> + 5.3425® — 28.62,

c25=0,1-10"7w® — 10~ @’ + 0.00760* — 0.1929> + 2.6003 >
—19.369m + 85.943,

c26 = —10"%w° 4+ 10~*w> — 0.0033w* +0.0417w> — 0.0312w>
—1.3467w +22.506,

c35 = —2-10"%w° 4+ 0.00030w° — 0.0196w* +0.5518w> — 8.0446w>
—56.764m +176.92,

c36 =2-10"%w® —0.0002> +0.0053w* — 0.0314w> — 0.8817 w?
+9.8418w — 46.894,

cs6 = —10"%w°+4-107 0> +0.0027w* — 0.1963w> 4+ 4.1351 w?
—33.889w + 132.19.

And for n = 50 we will have

cn=5-10"w®—5-10w’ +0.00190* — 0.0337@> +0.2625w*
—0.9003w +25.528,

c33 =310 w® —0.00320° +0.15990* — 4.0373w> + 54.298 w?
—375.60+1152.7,

css = 0.00120°% —0.1535w° +7.7596w* — 197.85w> + 2683.8w?
—18680.0 + 55996.0,

ce6 = 8- 107w —0.0088w° +0.3441 0* — 6.016603 +47.,389w>
—158.57m +934.19,

¢33 =—3-10"%w° +0.0003w° — 0.015w* 4+ 0.3728w> — 5.1356 w>
+40.1320 — 189.11,

c25 = 1072 0% —0.00190° + 0.0930* — 2.3969w> + 34.393 w?
—281.85w + 1318.0,

c26 =5-10"%w® —0.0005@° +0.0190* —0.2941 0> + 1.7179w?
—2.9522m + 151.95,

c35 = —0.0002w° +0.0220w° — 1.10770* +28.149w> — 380.74w?
+2646.00 — 8031.1,

c36 = —2-107 % +0.00260° — 0.1183w* +2.6507w> — 32.637 >
+231.45m — 1022.0,

cs6 = 0.0001w° — 0.0145w° 4+ 0.6741 w* — 15.853w> +207.61 »?

—1586.6w +7077.8.

Thus, having the value of parameter n we can construct optimal Lyapunov
function and the optimal control actions as functions of ®.

Construction of Optimal Trajectories. Let us complete the solution of the
problem for exact values of n and @. To obtain the numerical solution of the system
let us assume n = 1s~2, @ = 10s~!. Then the system (11) will have the following
form:
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1
_ZC%2 +cp+1 =0,
1
—5¢y3 — 1033 —c3s+1 =0,

——c3s—c35—10cs6+1 =0,

4
1,
_ZC26+1OCS6+1 :0,
—5¢p — ez —cs+cze =0,

! 2 (13)
—5€22625 — €23 +cs56—10cs =0
— 562202 +10c25 +ces =0,

—5¢p5 — 5€23€25 = €33 — €55~ 10c3¢ =0,

—5¢26 — 5626023 +10c35 —cs¢ =0,

1
_5026025 —c36+ 10c55 — 10cgg = 0.

\
From (13) we get

¢ = 3.7653, c33 = 180.937, 55 =28.3935, cg6 = 30.9565,
3 = —20.4556, Cr5 = —2.6166, Cr6 — 2.5444, C35 — —1.3302,
c3 = —22.301, c¢56 =0.0618

as the solution of the system, which also makes Lyapunov function positive definit.
So Lyapunov’s optimal function will be
0 1 2 2 2
V¥ (x2,x3,X5,X6) = 3 (3.7653x3 + 180.937x3 + 28.3935x3

+ 30.9565)6% —40.9112x5x3 — 5.2332x5x5 + 5.0888x5x¢
—2.6604x5x3 — 44.602x6x3 +0.1236x5x6) . (14)

So,

1
u = — 2 (376533 — 20.4556x3 — 2.6166xs +2.5444x)
= —1.8827x, + 10.2278x3 + 1.3083xs — 1.2722x¢.  (15)

Let us substitute the expression of u® from (15) into (5). Thus, we will get the
following system:

X1 = 0’

Xp = —1.8827xp +5.2278x3 + 1.3083x5 — 1.2722x¢,

X3 = —Xs,

X4 =0, (16)
X5 = 10xg — x3,

Xﬁ = X2 — 10x5.
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Let us solve (16) for x; (0) = x2(0) = x3(0) = 0.2, x4(0) =x5(0) =x6(0) =0.1.
We will obtain the following solutions:

X1 (l‘) =0.2,
Xz(f) — _0_6875871.811% (60.4463t _ 1.3119614364[
+0.0211e!70% ¢0s[9.97531] — 0.0104¢' 740 5in[9.97531]) ,

x3 (I) — _0_0499671.811% (60.4463t _ 4.855161'4364t
—0.1514¢" 798 ¢05[9.97531] +0.1539¢'- 740 5in[9.97531] ) , (17)
X4(l‘) =0.1,
Xs (l) — —0.06826_1'8“7t (60.4463t _ 1.3348614364[
—1.1323¢! 7408 ¢05[9.97531] — 1.0979¢"-740% 5in[9.97531]) ,
XG(I) — 0.00436_1'8117t (60.446t +4.8254€1'4364t
+17.35034¢!- 7408 ¢05[9.9753¢] — 18.1445¢! 7408 sin[9.9753t]) .
Let us now construct the graphs of the trajectories x;(t) (i = 1,...,6) using
Wolfram Mathematics (see Figs. 1-6).
T
Fig. 1. Graph of function x; (). Fig. 2. Graph of function x,(¢).
LAY |
Fig. 3. Graph of function x3(¢). Fig. 4. Graph of function x4(¢).

The graphs show that the optimal trajectories are approaching to the solution
(3), which means that the system (5) is asymptotically stable of part of variables x,
X3, X5, X6-
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Fig. 5. Graph of function xs(z). Fig. 6. Graph of function x(#).

To get the exact expression of u°(¢), we will substitute x;(t) (i = 2,3,5,6) from
(17) into (15). Then we will have

W) = 0.6893¢ 13057 1 0.8725¢ 0375
+ 1. 10426_0'0709t COS[I] + 1'04956—0.07091 Sin[t].

Let us also construct the graphs of the optimal control «°(¢) using Wolfram
Mathematics (see Fig. 7).

f\
| |I I' |'I I'I Al N r
| l lI' |I l' |II z Il'u / I"'-._.-""l \xff\;\/’ —
|III Illl \/

| || |I | W/
Fig. 7. Graph of function xs(z).

Conclusion. An optimal stabilization problem for part of variables of ro-
tary movement of a rigid body with one fixed point in Sophia Kovalevskaya’s case
is discussed in this work. The differential equations of motion of the system are
given and it is shown that the system may rotate around Ox with constant angular
velocity. Accepting this motion as an unexcited motion, the differential equations of
the corresponding excited motion were drawn up. Then the system was linearized and
a control action was introduced along one of the generalized coordinates. The optimal
stabilization problem for part of the variables was stated and solved. The graphs of
optimal trajectories were constructed and shown.

Received 18.05.2023
Reviewed 27.06.2023

Accepted 11.07.2023



60 ON OPTIMAL STABILIZATION OF PART OF VARIABLES OF ROTARY MOVEMENT ...

REFERENCES

1. Buchholz N.N. The Main Course of Theoretical Mechanics. Part 2. Moskow, Nauka,
(1972), 332 (in Russian).

2. Shahinyan S.G., Avetisyan L.M. On One Problem of Optimal Stabilization of the
Rotational Motion of a Rigid Body Having a Fixed Point. Proceedings of the IX
International Conference “Problems of the Dynamics of Interaction of Deformable
Media”. Armenia, Goris (2018), 306-310.

3. Malkin I.G. Theory of Motion of Stability. Moskow, Nauka (1966), 475-514
(in Russian).

4. Krasovsky N.N. Some Tasks of the Theory of Motion Control. Moskow, Nauka (1968),
475 (in Russian).

5. Rumyantsev V.V., Oziraner A.S. Stability and Stabilization of Movement in Relation to
Part of the Variables. Moskow, Nauka (1987), 256 (in Russian).

6. Krasovsky N.N. Problems of Stabilization of Controlled Motions. In Book: Theory
of Motion of Stability (ed. I.G. Malkin Add. 4). Moskow, Nauka (1966), 475-515
(in Russian).

7. Al’brecht E.G., Shelementiev G.S. Lectures on the Theory of Stabilization. Sverdlovsk
(1972), 274 (in Russian).

U. Q. cUNhL3UL

Uty UuocUurd 4tS Nruesnn. Mhu: UUWCULh MSSUUUL sUrduudu
LUS oNdNhULULLEMh Uh UUWUP OMShUUL HYUSNFLUSUUWL UWURL
Undy3ud uNJINLeJdued3uddr YNLNry

Whwypwopmd nhpuwpywd £ wbpupd Yugph ompop wypypynn whin
dupdbh oupppiw] Juymbwgdwb pbnhpp pop hnthnpuwjumbbtph th dwuh
Undjw Gnynjlujuyuyh nbiygpmd: Atpdwod G dwpdbh swpddwb nhptiptinghuy
huwjuwuwnnuibbpp, gnyg £ qpjwd, np uipugyud hwiwljupgp pny) © puhu
wpnyy Ox wnwigph 2nipg hwugunni o wilymbuwght wpuwgmpjudp: Canmbting
wyn pupdnuip npytiu sqgpgnyuo swipdnud, Juquyt) G0 npwh hwmiwwyugpuuppub
gngnyuwd punpdiwb nhytptitghw) hwjwuwpnuiotipp: Wanthbgpl, vwhdwbwthwy-
Yuny  gdwjhtn  dnpuynpoipyudp,  ponhwipugqud  Ynnpnhbugpbtiphg  dklh
nunnipjudp dbpindyly £ nbjudupnn wantignieymb: Unpugywd nhjujupynn
huiwlupgh hwdwp dbwbpuyt; b mddty £ oupyphdwy Juynibwmgdwt fuinhp
pup thmhnprjutbiph th dwup: GQuomgylp G0 oupyphdwy pwpdnudoitiph b
ouphdwy nhjujupnn wanbgmpyui gpudhybtipp:
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C. I LTATUHAH

OB ONITUMAJIBHON CTABIJIN3AIINN 110 YACTU TEPEMEHHBIX
BPAIIIATEJ/IBHOI'O ABU2KEHU A TBEPAOI'O TEJIA, UMEIOIIETO
HEITIOZIBINI2KHYIO TOYKY

B pabore paccmarpuBaercst 3a1a4a CTAOMIN3AINN 10 TaCTH TTEPEMEHHBIX
BPAIATETHLHOTO JIBUKEHUST abCOJIOTHO TBEPJOTO TeJja, BOKPYT HETOABUKHOMN
touku B ciiyaae Codou Kopanesckoii. 1lokazano, uTo Te/io gomycKkaeT BpallieHue
BOKpyT ocu Ox C TOCTOAHHON yTJIOBO# cKopocThio. IlpmHmmas To, 4To 3TO0
JIBUYKEHUE SIBJITETCS] HEBO3MYIIIEHHBIM, COCTABJIEHA COOTBETCTBYIOIIAS CUCTEMA
muddepeHImaabHBIX YPABHEHWH BO3MYIIIEHHOTO ABuKeHud. Jlaaee, orpanuyan-
BasiCh JIMHENHBIM NPUOJIUKEHUEM, TI0 HAIIPABJIEHUIO K OJHON u3 0000IIeHHBIX
KOOPJWHAT BBEJEHO YIIPABJSIONIee Bo3aelicTBre. JIJist MOTydeHHON yIIpaBJIsio-
et cucreMbl ¢hOpPMyJIMPOBAHA U PEIEHA 3a/1a49a ONTUMAJIbHON CcTabuIm3alinn
10 9aCTH TEPEMEHHBIX PACCMATPUBAEMOTO IBMKeHust. [locTpoeHa OnTruMabHAST
dyukius JlsanyHoBa, MOJyYeHBI ONTUMAJBHOE VIIPAB/ILIOIIEe BO3ENCTBUE,
YPABHEHUS OITUMAJIbHBIX JIBUKEHUN ¥ MUHUMAJIBHOE 3HAUEHUE (PYHKIMOHAIIA,
BaBUCAIINE OT YIJIOBO CKOPOCTH HEBOBMYITIEHHOTO JBUKEHUS TeJa. 11ocTpoers!
rpapuKu  ONTUMAJBHBIX  JBUMKEHUN ¥  ONTUMAJIBHOTO  YIIPABJISIOIIETO
BO3JIENCTBUI.



