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M e c h a n i c s

ON OPTIMAL STABILIZATION OF PART OF VARIABLES OF
ROTARY MOVEMENT OF A RIGID BODY WITH ONE FIXED POINT

IN THE CASE OF SOPHIA KOVALEVSKAYA

S. G. SHAHINYAN ∗

Chair of Mechanics, YSU, Armenia

An optimal stabilization problem for part of variables of rotary movement of
a rigid body with one fixed point in the Sophia Kovalevskaya’s case is discussed
in this work. The differential equations of motion of the system are given and it
is shown that the system may rotate around Ox with a constant angular velocity.
Taking this motion as unexcited, the differential equations for the corresponding
excited motion were drawn up. Then the system was linearized and a control
action was introduced along one of the generalized coordinates. The optimal
stabilization problem for part of the variables was posed and solved. The graphs
of optimal trajectories and optimal control were constructed.
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Dynamics of the Rigid Body. Consider a rigid body which rotates around a
fixed point. Suppose the body is affected only by its own gravity, and its ellipsoid
of inertia is a squeezed ellipsoid of rotation, which means A = B = 2C. Let as also
assume that the center of mass of the body lays in the central plane of the ellipsoid of
the inertia (Sophia Kovalevskaya’s case) [1]. To examine the dynamics of the body,
we choose a coordinate system Oξ ηζ , which is fixed to the earth in such a way that
the Oξ axis is directed upwards vertically. Let us also fix the axis of the system Oxyz
along the main axis of inertia of the body, so that the Oz axis is directed along the
dynamical symmetry axis of the body and the Oxy plane coincide with the central
plane of the ellipsoid of inertia in such a way that the Ox axis passes through the center
of mass of the body C. Thus, the Oy axis can be positioned uniquely.

Let
−→
OC = a⃗(a;0;0) be the radius vector of C about the point O. Let the

direction cosines of Oξ axis about the axes Ox, Oy, Oz be denoted as γ1, γ2, γ3.
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Then the dynamical equations of Euler under the condition A = B = 2C will have the
following form [1]: 

2C
d p
dt

−Cqr = 0,

2C
dq
dt

+Cpr = Paγ3,

C
dr
dt

=−Paγ2

or 
2

d p
dt

−qr = 0,

2
dq
dt

+ rp = nγ3

dr
dt

=−nγ2,

(1)

where
Pa
C

= n. Let as add Poisson’s equations to the system (1). We will have

dγ1

dt
= rγ2 −qγ3,

dγ2

dt
= pγ3 − rγ1,

dγ3

dt
= qγ1 − pγ2.

(2)

Eqs. (1) and (2) together are a system of ordinary differential equations with 6
variables which are p, q, r, γ1, γ2, γ3.

It is easy to show that the systems (1) and (2) have a solution

p = ω = const, q = r = 0, γ1 = 1, γ2 = γ3 = 0, (3)

which means that the body can rotate around Ox with a constant angular velocity ω .
Let us construct the system of excited motion of the body by introducing the

following notations:

x1 = p−ω, x2 = q, x3 = r, x4 = γ1 −1, x5 = γ2, x6 = γ3.

Thus, we will have: 

ẋ1 = 0,

ẋ2 =−1
2

ωx3,

ẋ3 =−nx5,
ẋ4 = 0,
ẋ5 = ωx6 − x3,
ẋ6 = x2 −ωx5.

(4)

Here (4) will be linear approximation of differential equations of motion of the
rigid body for the solution (3). In [2] the stability of (3) of the system (1), (2) has been
examined and shown that the solution (3) is unstable [2, 3].
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Optimal Stabilization of Motion. Let us introduce the control action u along
the generalized coordinate x2 in (4). Then the system (4) will have the following form:

ẋ1 = 0,

ẋ2 =−1
2

ωx3 +u,

ẋ3 =−nx5,
ẋ4 = 0,
ẋ5 = ωx6 − x3,
ẋ6 = x2 −ωx5.

(5)

Let us split (5) into two separate systems, which are
ẋ2 =−1

2
ωx3 +u,

ẋ3 =−nx5,
ẋ5 = ωx6 − x3,
ẋ6 = x2 −ωx5,

(6)

and {
ẋ1 = 0,
ẋ4 = 0.

(7)

To check the controllability of (6) , let us use Kalman’s principle [4].
We have

A =


0 −1

2
ω 0 0

0 0 −n 0
0 −1 0 ω

1 0 −ω 0

 , B =


1
0
0
0

 ,

K =
{

B,AB,A2B,A3B
}
.

Therefore,

K =


1 0 0 0
0 0 0 −nω

0 0 ω 0
0 1 0 −ω2

 .

It is obvious that detK = nω2 ̸= 0, and hence (6) is fully controllable. Now we
are ready to pose the following

P r o b l e m . Find an optimal control action u0 such that the solution
x1 = · · ·= x6 = 0 of (5) becomes asymptotically stable for the variables x2, x3, x5, x6
(for part of variables) [5], while minimizing the following functional:

J[·] =
∞∫

0

(
u2 + x2

2 + x2
3 + x2

5 + x2
6
)

dt. (8)
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We will solve the problem using Lyapunov–Belman’s method [6, 7]. As there
are two parameters in (5), which are n and ω , then Lyapunov’s optimal function and
the optimal control action will both be functions containing the same parameters.

From
Pa
C

= n it is obvious that the value of n depends on the shape of the rigid body
and ω may have different values.

Belman’s expression for the system (6) will have the form

B[·] = ∂V
∂x2

ẋ2 +
∂V
∂x3

ẋ3 +
∂V
∂x5

ẋ5 +
∂V
∂x6

ẋ6 +u2 + x2
2 + x2

3 + x2
5 + x2

6

=
∂V
∂x2

(
−1

2
ωx3 +u

)
− ∂V

∂x3
nx5 +

∂V
∂x5

(ωx6 − x3)

+
∂V
∂x6

(x2 −ωx5)+u2 + x2
2 + x2

3 + x2
5 + x2

6. (9)

As long as Belman’s expression reaches 0, as its minimum value for the optimal
control value, then we will have

∂B
∂u

∣∣∣∣
u=u0

=
∂V
∂x2

+2u0 = 0

and hence:

u0 =−1
2
· ∂V

∂x2
.

Substituting the above expression of u0 into (9), we will have

B0 =−1
2
· ∂V

∂x2
ωx3 −

1
2

(
∂V
∂x2

)2

− ∂V
∂x3

nx5 +
∂V
∂x5

ωx6 −
∂V
∂x5

x3

+
∂V
∂x6

x2 −
∂V
∂x6

ωx5 +
1
4

(
∂V
∂x2

)2

+ x2
2 + x2

3 + x2
5 + x2

6 = 0. (10)

For the system (6) let us choose a Lyapunov function in the following form:

V (x2,x3,x5,x6) =
1
2
(
c22x2

2 + c33x2
3 + c55x2

5 + c66x2
6 +2c23x2x3 +2c25x2x5

+2c26x2x6 +2c53x5x3 +2c36x3x6 +2c56x5x6) .

By substituting Lyapunov’s function into (10), we get

−1
2

ωx3(c22x2 + c23x3 + c25x5 + c26x6)−
1
4
(c22x2 + c23x3 + c25x5 + c26x6)

2

−nx5(c33x3 + c23x2 + c35x5 + c36x6)

+(ωx6 − x3)(c55x5 + c25x2 + c35x3 + c56x6)

+(x2 −ωx5)(c66x6 + c26x2 + c36x3 + c56x5)+ x2
2 + x2

3 + x2
5 + x2

6 = 0.

In the above equation the coefficients of x2
2, x2

3, x2
5, x2

6, x2x3, x2x5, x2x6, x5x6,
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x5x3, x6x3 should be all equal to 0, so we get:

−1
4

c2
22 + c26 +1 = 0,

−1
2

ωc23 −
1
4

c2
23 − c35 +1 = 0,

−1
4

c2
25 −nc35 −ωc56 +1 = 0,

−1
4

c2
26 +ωc56 +1 = 0,

−1
2

ωc22 −
1
2

c22c23 − c25 + c36 = 0,

−1
2

c22c25 −nc23 + c56 −ωc26 = 0,

−1
2

c22c26 +ωc25 + c66 = 0

−1
2

ωc25 −
1
2

c23c25 −nc33 − c55 −ωc36 = 0,

−1
2

ωc26 −
1
2

c26c23 +ωc35 − c56 = 0,

−1
2

c26c25 −nc36 +ωc35 −ωc66 = 0.

(11)

The system (11) is a system of algebraic equations for the coefficients ci j,
which contains also the parameters n and ω . Let us fix a value for the parameter n
(n = 10 and n = 50). Now we can solve the optimal stabilization problem, and for the
optimal Lyapunov function we will have:

V 0(x1,x2, . . . ,x6) =
1
2
(
c22x2

2 + c33x2
3 + c55x2

5 + c66x2
6 +2c23x2x3 +2c25x2x5

+2c26x2x6 +2c35x5x3 +2c36x3x6 +2c56x5x6) ,

as for the optimal control actions we will have:

u0 =−(c22x2 + c23x3 + c25x5 + c26x6) . (12)

The minimum value of the functional will be as follows:

J[·] =1
2
(
c22x2

20 + c33x2
30 + c55x2

50 + c66x2
60 +2c23x20x30 +2c25x20x50

+2c26x20x60 +2c35x50x30 +2c36x30x60 +2c56x50x60) ,

where xi0 = xi(0), i = 2,3,5,6.
For n = 10,
c22 =−2 ·10−7ω6 +2 ·10−5ω5 −0.0007ω4 +0.0089ω3 −0.0149ω2

−0.2255ω +9.6116,
c33 = 5 ·10−7ω6 −8 ·10−5ω5 +0.0051ω4 −0.1608ω3 +2.5579ω2

−18.178ω +62.659,
c55 = 6 ·10−7ω6 −9 ·10−5ω5 +0.0536ω4 −1.5505ω3 +23.449ω2

−171.74ω +498.06,
c66 =−8 ·10−6ω6 +9 ·10−5ω5 −0.0327ω4 +0.4815ω3 −1,8421ω2

−4.1251ω +35.141,
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c23 = 8 ·10−6ω5 −0.0009ω4 +0.0352ω3 −0.6605ω2 +5.3425ω −28.62,
c25 = 0,1 ·10−7ω6 −10−4ω5 +0.0076ω4 −0.1929ω3 +2.6003ω2

−19.369ω +85.943,
c26 =−10−6ω6 +10−4ω5 −0.0033ω4 +0.0417ω3 −0.0312ω2

−1.3467ω +22.506,
c35 =−2 ·10−6ω6 +0.0003ω5 −0.0196ω4 +0.5518ω3 −8.0446ω2

−56.764ω +176.92,
c36 = 2 ·10−6ω6 −0.0002ω5 +0.0053ω4 −0.0314ω3 −0.8817ω2

+9.8418ω −46.894,
c56 =−10−6ω6 +4 ·10−5ω5 +0.0027ω4 −0.1963ω3 +4.1351ω2

−33.889ω +132.19.

And for n = 50 we will have

c22 = 5 ·10−7ω6 −5 ·10−5ω5 +0.0019ω4 −0.0337ω3 +0.2625ω2

−0.9003ω +25.528,
c33 = 3 ·10−5ω6 −0.0032ω5 +0.1599ω4 −4.0373ω3 +54.298ω2

−375.6ω +1152.7,
c55 = 0.0012ω6 −0.1535ω5 +7.7596ω4 −197.85ω3 +2683.8ω2

−18680.0ω +55996.0,
c66 = 8 ·10−5ω6 −0.0088ω5 +0.3441ω4 −6.0166ω3 +47.,389ω2

−158.57ω +934.19,
c23 =−3 ·10−6ω6 +0.0003ω5 −0.015ω4 +0.3728ω3 −5.1356ω2

+40.132ω −189.11,
c25 = 10−5ω6 −0.0019ω5 +0.093ω4 −2.3969ω3 +34.393ω2

−281.85ω +1318.0,
c26 = 5 ·10−6ω6 −0.0005ω5 +0.019ω4 −0.2941ω3 +1.7179ω2

−2.9522ω +151.95,
c35 =−0.0002ω6 +0.022ω5 −1.1077ω4 +28.149ω3 −380.74ω2

+2646.0ω −8031.1,
c36 =−2 ·10−5ω6 +0.0026ω5 −0.1183ω4 +2.6507ω3 −32.637ω2

+231.45ω −1022.0,
c56 = 0.0001ω6 −0.0145ω5 +0.6741ω4 −15.853ω3 +207.61ω2

−1586.6ω +7077.8.

Thus, having the value of parameter n we can construct optimal Lyapunov
function and the optimal control actions as functions of ω .

Construction of Optimal Trajectories. Let us complete the solution of the
problem for exact values of n and ω . To obtain the numerical solution of the system
let us assume n = 1s−2, ω = 10s−1. Then the system (11) will have the following
form:
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−1
4

c2
22 + c26 +1 = 0,

−5c23 −
1
4

c2
23 − c35 +1 = 0,

−1
4

c2
25 − c35 −10c56 +1 = 0,

−1
4

c2
26 +10c56 +1 = 0,

−5c22 −
1
2

c22c23 − c25 + c36 = 0,

−1
2

c22c25 − c23 + c56 −10c26 = 0

−1
2

c22c26 +10c25 + c66 = 0,

−5c25 −
1
2

c23c25 − c33 − c55 −10c36 = 0,

−5c26 −
1
2

c26c23 +10c35 − c56 = 0,

−1
2

c26c25 − c36 +10c55 −10c66 = 0.

(13)

From (13) we get

c22 = 3.7653, c33 = 180.937, c55 = 28.3935, c66 = 30.9565,
c23 =−20.4556, c25 =−2.6166, c26 = 2.5444, c35 =−1.3302,
c36 =−22.301, c56 = 0.0618

as the solution of the system, which also makes Lyapunov function positive definit.
So Lyapunov’s optimal function will be

V 0 (x2,x3,x5,x6) =
1
2
(
3.7653x2

2 +180.937x2
3 +28.3935x2

5

+30.9565x2
6 −40.9112x2x3 −5.2332x2x5 +5.0888x2x6

−2.6604x5x3 −44.602x6x3 +0.1236x5x6) . (14)

So,

u0 =−1
2
(3.7653x2 −20.4556x3 −2.6166x5 +2.5444x6)

=−1.8827x2 +10.2278x3 +1.3083x5 −1.2722x6. (15)

Let us substitute the expression of u0 from (15) into (5). Thus, we will get the
following system:

ẋ1 = 0,
ẋ2 =−1.8827x2 +5.2278x3 +1.3083x5 −1.2722x6,
ẋ3 =−x5,
ẋ4 = 0,
ẋ5 = 10x6 − x3,
ẋ6 = x2 −10x5.

(16)
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Let us solve (16) for x1(0) = x2(0) = x3(0) = 0.2, x4(0) = x5(0) = x6(0) = 0.1.
We will obtain the following solutions:

x1(t) = 0.2,
x2(t) =−0.6875e−1.8117t

(
e0.4463t −1.3119e1.4364t

+0.0211e1.7408t cos[9.9753t]−0.0104e1.7408t sin[9.9753t]
)
,

x3(t) =−0.0499e−1.8117t
(
e0.4463t −4.8551e1.4364t

−0.1514e1.7408t cos[9.9753t]+0.1539e1.7408t sin[9.9753t]
)
,

x4(t) = 0.1,
x5(t) =−0.0682e−1.8117t

(
e0.4463t −1.3348e1.4364t

−1.1323e1.7408t cos[9.9753t]−1.0979e1.7408t sin[9.9753t]
)
,

x6(t) = 0.0043e−1.8117t
(
e0.446t +4.8254e1.4364t

+17.35034e1.7408t cos[9.9753t]−18.1445e1.7408t sin[9.9753t]
)
.

(17)

Let us now construct the graphs of the trajectories xi(t) (i = 1, . . . ,6) using
Wolfram Mathematics (see Figs. 1–6).

Fig. 1. Graph of function x1(t). Fig. 2. Graph of function x2(t).

Fig. 3. Graph of function x3(t). Fig. 4. Graph of function x4(t).

The graphs show that the optimal trajectories are approaching to the solution
(3), which means that the system (5) is asymptotically stable of part of variables x2,
x3, x5, x6.
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Fig. 5. Graph of function x5(t). Fig. 6. Graph of function x6(t).

To get the exact expression of u0(t), we will substitute xi(t) (i = 2,3,5,6) from
(17) into (15). Then we will have

u0(t) = 0.6893e−1.3657t +0.8725e−0.3753t

+1.1042e−0.0709t cos[t]+1.0495e−0.0709t sin[t].

Let us also construct the graphs of the optimal control u0(t) using Wolfram
Mathematics (see Fig. 7).

Fig. 7. Graph of function x5(t).

Conclusion. An optimal stabilization problem for part of variables of ro-
tary movement of a rigid body with one fixed point in Sophia Kovalevskaya’s case
is discussed in this work. The differential equations of motion of the system are
given and it is shown that the system may rotate around Ox with constant angular
velocity. Accepting this motion as an unexcited motion, the differential equations of
the corresponding excited motion were drawn up. Then the system was linearized and
a control action was introduced along one of the generalized coordinates. The optimal
stabilization problem for part of the variables was stated and solved. The graphs of
optimal trajectories were constructed and shown.
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S. G. 
AHINYAN

MEK AN
AR	 KET OWNECO� PIND MARMNI PTTAKAN 
AR	MAN

�ST �O�OXAKANNERI MI MASI �PTIMAL KAYOWNACMAN MASIN

SOFYA KOVOLEVSKAYAYI DEPQOWM

A�xatanqowm ditarkva� � an�ar� keti �owrj� pttvo� pind

marmni �ptimal kayownacman xndir� �st �o�oxakanneri mi masi

Sofya Kovol skayayi depqowm: Berva� en marmni �ar�man diferencial

havasarowmner�, cowyc � trva�, or stacva� hamakarg� �owyl � talis

ptowyt Ox a�ancqi �owrj hastatown ankyownayin aragow�yamb: �ndownelov
ayd �ar�owm� orpes �grg�va� �ar�owm, kazmvel en dran hamapatasxan

grg�va� �ar�man diferencial havasarowmner�: Aynowhet , sahmana�ak-

velov g�ayin motavorow�yamb, �ndhanracva� koordinatneric meki

ow��ow�yamb nermow�vel � �ekavaro� azdecow�yown: Stacva� �ekavarvo�

hamakargi hamar � akerpvel  low�vel � �ptimal kayownacman xndir

�st �o�oxakanneri mi masi: Ka�owcvel en �ptimal �ar�owmneri  

�ptimal �ekavaro� azdecow�yan grafikner�:
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Ñ. Ã. ØÀÃÈÍßÍ

ÎÁ ÎÏÒÈÌÀËÜÍÎÉ ÑÒÀÁÈËÈÇÀÖÈÈ ÏÎ ×ÀÑÒÈ ÏÅÐÅÌÅÍÍÛÕ
ÂÐÀÙÀÒÅËÜÍÎÃÎ ÄÂÈÆÅÍÈß ÒÂÅÐÄÎÃÎ ÒÅËÀ, ÈÌÅÞÙÅÃÎ

ÍÅÏÎÄÂÈÆÍÓÞ ÒÎ×ÊÓ

Â ðàáîòå ðàññìàòðèâàeòñÿ çàäà÷a ñòàáèëèçàöèè ïî ÷àñòè ïåðåìåííûõ

âðàùàòåëüíîãî äâèæåíèÿ àáñîëþòíî òâåðäîãî òåëà âîêðóã íåïîäâèæíîé

òî÷êè â ñëó÷àå Ñîôüè Êîâàëåâñêîé. Ïîêàçàíî, ÷òî òåëî äîïóñêàåò âðàùåíèå

âîêðóã îñè Ox ñ ïîñòîÿííîé óãëîâîé ñêîðîñòüþ. Ïðèíèìàÿ òî, ÷òî ýòî

äâèæåíèå ÿâëÿåòñÿ íåâîçìóùåííûì, ñîñòàâëåíà ñîîòâåòñòâóþùàÿ ñèñòåìà

äèôôåðåíöèàëüíûõ óðàâíåíèé âîçìóùåííîãî äâèæåíèÿ. Äàëåå, îãðàíè÷è-

âàÿñü ëèíåéíûì ïðèáëèæåíèåì, ïî íàïðàâëåíèþ ê îäíîé èç îáîáùåííûõ

êîîðäèíàò ââåäåíî óïðàâëÿþùåå âîçäåéñòâèå. Äëÿ ïîëó÷åííîé óïðàâëÿþ-

ùåé ñèñòåìû ñôîðìóëèðîâàíà è ðåøåíà çàäà÷à îïòèìàëüíîé ñòàáèëèçàöèè

ïî ÷àñòè ïåðåìåííûõ ðàññìàòðèâàåìîãî äâèæåíèÿ. Ïîñòðîåíà îïòèìàëüíàÿ

ôóíêöèÿ Ëÿïóíîâà, ïîëó÷åíû îïòèìàëüíîå óïðàâëÿþùåå âîçäåéñòâèå,

óðàâíåíèÿ îïòèìàëüíûõ äâèæåíèé è ìèíèìàëüíîå çíà÷åíèå ôóíêöèîíàëà,

çàâèñÿùèå îò óãëîâîé ñêîðîñòè íåâîçìóùåííîãî äâèæåíèÿ òåëà. Ïîñòðîåíû

ãðàôèêè îïòèìàëüíûõ äâèæåíèé è îïòèìàëüíîãî óïðàâëÿþùåãî

âîçäåéñòâèÿ.


