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The work is focused on studying of the existence, uniqueness, and various
qualitative properties of the constructive solution of an infinite system of
algebraic equations with a concave nonlinearity property, which are gener-
ated by Toeplitz matrices. In addition to its independent mathematical interest,
such systems have a significant application in several branches of mathemat-
ical physics and mathematical biology. Those particularly appear in discrete
problems within radiative transfer theory, kinetic theory of gases, dynamic the-
ory of p-adic strings, and the mathematical theory of epidemic propagation.
We establish the existence of a positive solution for the system in the class of
bounded sequences, as well as provide an iterative method to approximate to
the solution. We also study the asymptotic behavior of the solution at infinity
and the uniqueness of the nontrivial solution with non-negative elements in the
class of bounded sequences. The last section of the paper provides examples of
applications of the corresponding Toeplitz matrix and the function that describes
the nonlinearity.
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Introduction. The work is focused on the following infinite system of nonlinear
algebraic equations:

xi=Y ai-;jG(xj), i=0,1,2,..., (1)
j=0
with respect to an infinite vector x = (xo, X1, ..., Xn, ...)] € m with non-negative

coordinates, where 7' is the transposition sign and m is the class of bounded sequences.
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It is assumed that the elements of Toeplitz matrix A = (aiai)?j:o satisfy the
following conditions:

oo

1) Clm>0, VmGZ:{O,j:l,jﬁ,}, Z a, =1;
m—=—oo

(=)

2) Z |m|ay, < +ce.
m—=—oo
The function G, which describes the nonlinearity, satisfies the following
properties:

a) G € C(R"), and G is monotonically increasing on Rt = [0, +o0);
b) G(0) = 0, and there exists 1 > 0 such that G(n) = 1n;
¢) y = G(u) is strictly concave on RT;

d) there exists ¢ : [0, 1] — [0, 1] continuous, monotonous, concave function
such that @(0) =0, ¢(1) = 1 and G(ou) > ¢(0)G(u) for anyo € [0, 1],u € [0, n].

Beyond its theoretical interest, the study of system (1) is crucial in deter-
mining the solvability of various discrete model problems in physics and biology.
In particular, certain equations like (1) are used in the radiative transfer theory in
an inhomogeneous mediums, kinetic theory of gases (within the framework of the
model of Bhatnagar—Gross—Kruk), in the mathematical theory of epidemic distribution
(within modified discrete models of Diekmann—Kaper and Atkinson—Reuter) and
dynamic theory of p-adic strings (see [1-5]).

It is noteworthy that when G(u) = u, the system (1) turns into
Wiener—Hopf type discrete equations, a subject that is extensively studied in nu-
merous works (see for instance [6—9]). In the case when G(u) = u®*, 0 < o < 1, and

V(A) = Z may, < 0, the system (1) has been considered in [10]. It was proved
m——oo

that a non-negative solution exists for system (1) in the class of bounded sequences.
Later, that result was generalized in the case when G(u) satisfies a)—c) and v(A) <0
(see [11]). Note that papers [10] and [! 1] did not consider the uniqueness problem
and the provided proofs of existence theorems are not constructive.

In this work, under conditions 1)-2) and a)-d), it becomes possible to es-
tablish the existence of a non-negative solution of (1) in the class of bounded se-
quences. Besides, it provides a successive approximations converging to the so-
lution with a geometric progression rate. Additionally, the work establishes the

convergence of the positive series Z (G(xn) — x,). Utilizing this fact alongside
n=0
Jensen’s inequality and some a’priori estimates for concave functions, we successfully

demonstrate the uniqueness of the solution for system (1) within the class of non-
trivial bounded sequences with non-negative elements when a_, = a,,n=1,2,...
At the end of this paper, examples of matrix A and nonlinearity G are provided.
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The Existence of the Nontrivial Solution. In this section, we are going to
prove the existence of a solution of the system (1) under conditions 1) and a)-d).

Theorem 1. Under conditions 1) and a)-d), infinite system (1) of

nonlinear equations has a positive solution X* = (xj, xj, ..., X, ...) in the class
m, moreover, there exists limx; = 1.
1—o0

Additionally, successive approximations

k+) *)
x} . E ai—jG(x; ),
=0

(

i=0,1,2..., k=0,1,2,..., 2)
0)

=0,
provided for system (1) converge to the system solution in a geometric progression
rate.

*
Xi

Proof. Consider the successive approximations (2). It is easy to verify by
induction that for any i = 0,1,2,...

£

; ) is decreasing with respect to k 3)

and

+(k)
i

>0, k=0,1,2,... 4)

0
Denote oy := Z as. Condition 1) immediately implies that oy € (0, 1).

§=—o0

From (2)—(4) we get the following simple inequality Gox;f(o) < x;-k(l) < x;‘(o),

i=0,1,2,... Taking into account the monotonicity of function G and 1), from the
preceding inequality and from (2) we come to the following inequality:

- (0) - (1) - ©) .
Y ai jG(oox; ) < Y ai jG(x; )<Y aijG(x; ), i=0,1,2,... (5)
j=0 Jj=0 j=0

From (2), (5) and condition d), the following double inequality is immediately derived
(o) <x” <", =012, (©)

Once again considering the monotonicity of function G and the conditions 1)
and d), from the inequality (6) we obtain the following chain of inequalities:

(2) (3) (2)
o(p(00))x; <xi <x;i .

Continuing this process, it is straightforward to confirm that at the k-th step of
induction, we reach the following inequalities:

F(oo)x <x"™ <x i=0,1,2,.... k=1.2,..., 7)

where Fi(0) := @(¢o(...¢(0)...)).
k

(o))
=o(3)
3
%o
2

k+1

Denote by [ := . It follows from the properties of function ¢ that

1—
1 €(0,1). It is easy to show that ¢(cp) > lop+ 1 — [, which, in its turn, implies
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that ¢(¢(00)) > @(log+1—1) >1(log+1—1)+1—1=1*>0p+ 1 —[%. Once more,
employing inductive reasoning, at the k-th step we obtain

Fi(oy) > lFop+1—1F, k=1,2,... (8)
From (3), (7) and (8) we get that

0<x — ' <nl—o)i*, i=0,1,2,..., k=0,1,2,... )
We conclude from (3), (4) and (9) that the sequence of infinite vectors
= (xg(k),x’f<k), ...,x,’;(k), ...)T, k=0,1,2,..., with non-negative coordinates
converges to the vector x* = (x4, x%, ..., x5, ...)T €m,ie. hmx + =x7,i=0,1,2,...,

MOreover, ke
0<xi<m, i=0,1,2,... (10)

Taking into account the continuity of the function G and the evident

double inequality Za, j (k)) <n Za,-_j <nfork=0,1,2,...andi=0,1,2,...,
j=0 j=0
we conclude that the infinite vector x* = (xj, x7, ..., x5, ..
system (1).

Now, we write the inequality (9) fork+1,k+2, ..., k+1¢:

)T is a solution of the

0<x *k+1 w(k+2) <n(1 Go)lk+1,
OS >.,’<1<+2) *(k+3 < — 6, lk+27

i {1 =) i=0,1,2,...
0 Sx;’((k-%—f—l) . k-H < n(l —G())lk-H

By adding the left and rlght hand sides of obtained inequalities to the inequality

) e - N(1=oo)lf

(9), we get 0 < x*" i=0,1,2,... In the last inequality by

A
fixing k and passing to the limit as t — oo, we obtain the following uniform estimation:
1 —op)lk
ng;*(k)—xl’fgn(llo),i:0,1,2,..., k=1,2,... a1
We now ensure that there exists limx; = 7. To achieve this, we first note that it
i—yoo
is straightforward to verify by induction with respect to & that
limx! =0, k=0,1,2.. (12)
i—o0

Then, we show that x;, | > x;. Indeed, by initially rewriting the successive
approximations (2) as

i
L+ 1) )
X = a,G(x;_ )
l s;m ’ (ZS)’ i=0,1,2,...,

and using induction with respect to & with monotonicity of function G, it is easy
to verify that x*() *(k) for any k € Z* :={0,1,2,...}. Passing to the limit
as k — oo we get the 1nequahty x; 1 > x;. Since 0 <xj <1, then there exists
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limx] =: A < n. Passing to the limit as i — oo in inequality (11), we obtain that

j—o00 )
1_
ogn—xgn(l_‘j‘))l

k — oo yields A = 1. O

,dforany k=1,2,... Since 0 <[ < 1, passing to the limit as

Some Properties of a Non-negative Nontrivial Solution of System (1). The
following theorem holds:

Theorem 2. Let conditions 1) and a)-c) hold. Then, for any

X = (X0, X1, « -y Xn, )T nontrivial, non-negative bounded solution of system (1)
the following double inequality holds:
O0<x;<n, i=0,1,2,... (13)

Moreover, if the condition 2) holds, then

oo

Y (G(xi) —xi) < oo, (14)

i=0
Proof. Since there exists iy € Z" such that xj, > 0, then from conditions a),
b) and 1), the inequality x; > a;_;,G(x;,) >0, i =0,1,2,..., is immediately obtained.

Now we prove the inequality x; < n, i = 0,1,2,... To achieve that, we
initially prove that x; <n, i=0,1,2,... Denote by ¢ := sup x;. Taking into account
i€zt

conditions 1) and a), b), from system (1) we get that x; < G(c). This immediately

G
implies that ¢ < G(c). Since ¢ > 0 and the function !

is monotonically decreasing

n (0, +o0), then from the last inequality and the COl’thditiOI’I b) it follows that ¢ < 7.
Notice that x; # 1, hence there exists i* € Z™" such that x;» < 7. Therefore, considering
conditions 1) and a), it is obtained from (1) that x; < n, i =0,1,2,...

We now proceed to prove the second part of the theorem. Initially employing
(13) and condition 1), we have

0<n—xi=n Z ai—j_zai—J (xj =M Z a— ]+Zaz J (n— G()C]))

J=—eo j=0 J=—eo j=

—1
Denote by ; :=n Z a;i—j, 1=0,1,2,... Let us prove, that
j:—oo

ili < oo, (15)
i=0

Under the conditions 1) and 2) we have that for any positive integer N

N N+1
ZI—nZ Y a=ny Y ain) ¥ a
i=0 s=i+1 i=0 s=i+1 i=0 s=N+2

N+1

=1 sas+1 Z as(N+1) <n2sas<+oo
s=1 s=N+2 s=1
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Passing to the limit as N — o we come to (15). Now, we denote by

c1:=1m Z sagand ¢ ;=1 Z s+ 1)a_g < 400, and let N; be some positive integer.
s=1
Once again considering condltlons 1), 2), a) along with (15), we deduce

N N oo

Y(n—x)<ei+), ¥ aii(n-Gx))
i=0 i=0 j=0
N1 N o
=ci+), Zal i(m—G(x)) —|—Z Y aj(n—Gx)))
= Of i=0 j=Ni+1
Ny i—N;—1
<C1+ZTI G(x))) Za11+nz Z a,
J—O S oo
<cl+2n Gty ¥ o,
i=0 s=N;—i
—01+Zn G(x;) +n2 Za_
k=0 s=
<art Y (-Gl +en
j=0
from which we get
N
Y (G(xi) —x;) < c1 4z < oo,
i=0
Passing to the limit as N| — 40, we come to (14). 0

Remark. Note that Theorem 2 and existence Theorem 1 imply

oo

Y (n—x7) < oo (16)

i=0

Indeed, since limx} = 1, then there exists iy € 2" such that x} > — > for any
i—yoo

i > ig. Considering conditions a)—c) alongside inequality (13), we can establish

n
n-6ts) _1-9(3)
n-x — 0
2
Sfrom which G(x) —x; > (1 —o)(n —x}). From the resulted inequality and due to

Z(G(x;k) —X;) < oo, (16) is derived.
i=0

=ac(0,1),

The Uniqueness of the Solution. Examples.

Theorem 3. Under conditions of Theorem 1, ifa_;=a;, i=1,2..., holds
alongside condition 2), then the system (1) does not have more than one solution
within the class of non-negative, nontrivial bounded sequences.
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Proof. For the sake of contradiction suppose that the system (1) apart from
the solution x* = (x§, x7, ..., X}, ...) (constructed by the successive approximations
(2)) also has another solution x = (xg, X1, ..., X, ... ) within the class of non-negative,
nontrivial, bounded sequences. By using Theorem 2 and applying induction on k, it is
easy to check that x; < x§‘<k) forany i=0,1,2,..., k=0,1,2,... Passing to the limit
as k — oo, we have

X <xi, i=0,1,2,... (17)

Hence .
0<xi—xi=)Y a;(G(x})—G(x;), i=0,12,... (18)

=0

Denote by Q the reverse function of G on R*. Considering (14) and the
condition a_; = a;, we have

1G]~ ~x) = (6 ) Fav-,(6065) - G)

i=0 i=0

:io( (x7) = G(x;) Za, j —Xi)

(G< <Za1 i xl Za] 1x1>
J
i)(G(xj) —G(x))) <xj - i)aj—iQ(G(xi))> :

Taking into account the easily verifiable inequality vQ(u) > Q(vu), v € [0, 1],
u € R" with Jensen’s inequality, we have

~.

Il
™

0

- - Zaj,iG(xi)
Z aj—i0(G(x;)) > Zaj—iQ =
=0 =0 ;)a ji (19)

>0 (iajiG(xi)> = Q(Xj).

Thus, by using (19), we reach the followmg inequality

Z(G<x1> ) ) < Z x;)) (x5 — Q(x;)). (20)

i=0
Define the following set of 1ndlces
P={icZ" :xf>x}.
According to our assumption P # & and P :=ZT\P={i € Z" : xf = x;}.
From the definition of the set P and inequality (13), one can see that inequality (20)
can be rewritten as

¥ (0 ) - 00 (S H - SEDZE) <o

x;i — 0(x;) X; =X
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On the other hand, when i € P, the following inequalities hold:
x; > x> 0(x;) >0,
G(xi) —xi _G(xi) —G(Q(xi)) _ G(x}) —G(x)
= > - .
xi — Q(x;) xi — Q(x;) X7 —X;
These inequalities contradict with (21), hence P = @, that is x] = x;,
i=0,1,2,... O
At the end of this work, we provide a few examples of theoretical nature of
Toeplitz matrix A and the nonlinearity G.
Examples of Toeplitz matrix A:

45 1
an =5 —, n==E1,%2,...,
QOZE;
1_
2*)an=1TZ"1‘”‘v 0<qg<l;
, 2\ 27t 't T 14g ’ o
3%) o, 0<g<l1.
“=3 z+1+q>’

Examples of function G:
a’) Gu) =u*, ¢(c)=0% 0O0<a<l;
_u® +ub

b) Glu) = =— plc)=0c", 0O<a B<I;

) Gu)=y(1—e), p(c)=0% y>1,0<a<l.

It should be noted that provided examples 2*), a*) and c¢*) besides of
theoretical significance, are also interesting in the context of discrete problems in the
dynamic theory of p-adic strings and the mathematical theory of spatial-temporal
spread of epidemic diseases.

Conclusion. In this work, sufficient conditions for the existence of a positive
solution to system (1) in the space of bounded sequences are obtained. The asymptotic
behavior of the constructed solution in the class of non-negative, non-trivial and
bounded sequences is studied. At the end, specific examples of the matrix A and
nonlinearity G are given that satisfy all the conditions of the proved theorems.
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hu. U bRUS r3UL, U G hITL3UL

S83NMLh83UL UUS h3NJ. Ub N2 Q0U3hL NULLAUNUCUUUUL
SUJUUUCAFULELh TLJdBrR SUUWUUCeh LOFSELPNRG-8NAFLL

Whwpuipp dhpdwd b yynyyhgjwb dwpphgbtipny dbynn gnguiynp ng
gowylinipjudp  hwipwhwyywluwd  hwjwuwpnitbph wigtpe  hwdwlwpgh
Untbuyppnipphy mdvwt gnympyub, dhwynipjut b jmodwb npny npujuub
huypynipynbttpnh nuntdbwuhpdwd hwpgptiphtb:

Yhipwplynn hwdwlupgp, pugh hopbnipnyt dwptduphijujubt htpu-
pnppnnipgnibhg, nibh twb Jhpwnwyud jupunp bpwbwnpynd dJwuptdugphluyub
$hqhuyh b Jwpbdunphljujut jhbuwpwbnipjub dh swpp §mntpnd: Uwubw-
Ynpwytiv, tpywd phyh hwdwupgbip dwgnud G Swnwquypdwd phnuthnfudwb
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nhunmpymbnd, quqbtph Yhotphy ypbunpmimd, p-winhy juptph phbwdhy
ntunipywd b hwdwdwpwyh pupuwddud duptidunphluiub phunyeyjub nhulptiyp
hubnhpbtpnud:

Whwpuwipnd wywgnigynd £ nhipuplynn hwdwlunpgh npuub jnuddwi
gnynipymin uwhdwbwthwl hwonpnujuitmpnibbbph puund: Wowewnpyymu k
wyn hwdwlupgh dnypuygnp nddwd junnigdwb dbpnn: NSapugnypygnid £ mddwl
wuhduynphy Juppl wibpenipyniomd:  Swonnynmd £ wle wyyugnigly ng
yphyhwy (nddwd dhwinipgnibp ng puguuwub biidtiypdbpny vwhdwbwthuy
hwonpnuljubtiniembibh puund:

Whuunpwtiph Ytiponud ptipynud G hwdiwwywypuupow@ qynwjthgyud dwypphgh
U ng godwylnipymbp Gupwgpnn $moyghwyh Yhpwnwlubd pbnyph ophttmybkp:

X. A. XAYATPAH, B. I. IUJTAHAH

O PABPEMIMMOCTU OJHOI HEJMHENHO! CUCTEMBI
BECKOHEYHBIX AJITEBPAMTYECKIX YPABHEHUIT C MATPUIIAMU
TUIIA TEILTAIA

Pabora mocssiena BompocaM KOHCTPYKTHBHON Pa3pEITUMOCTH, €IUHCT-
BEHHOCTHU U M3YYIEHUIO HEKOTOPBHIX KAUEeCTBEHHDBIX CBOWCTB PEIIEHUS JJIsi OHOMN
OECKOHETHON CUCTEMBI JIreOpamIecKuX YPaBHEHNU C BOTHYTOI HEJIMHEHHOCTBIO
u maTpuriamu Temmuia. PaccMarpuBaemas cucremMa, KpOMe CAMOCTOSITETBHOTO
MaTeMATHIECKOIO MHTEPECa, MMeeT BayKHBII IPUKJIAIHON HHTEPEC B PA3JIMIHBIX
OTPACISIX MATEMATHIECKOM (PUBNKI U MaTeMaTHIecKoi onoaorun. B wacTHOCTH
TaKMe CUCTEMbl BO3ZHHUKAIOT B TEOPHH IIE€PEHOCA M3JIy4YEHUsl, B KUHETHICCKON
TeOpHuHn ra3osB, B ﬂHHaMquCKOﬁ Teopun p-aJIAIeCKUX CTPYH U B JUCKPETHBIX
3aJa9aX MaTeMaTHIeCKON TeOPUN PACIPOCTPAHEHUS SIIMIEMUL.

B pabore mokasbiBaeTcst CyIeCTBOBAHUE TOJIOXKUTETLHOTIO PEIICHUST JIJTsT
9TOI CHCTEMBI B IIPOCTPAHCTBE OIPAHUYIEHHBIX IIOC/IegoBaTeabHOCTel. [lpe-
JlaraeTcsi MeTOJ, ITOCTPOEHUsl NPHUOJMKEHHOIO PpEIIeHUs JTaHHOW CHCTEMBI.
Uccnenyercs acHMOTOTHYIECKOE TTOBEJICHUE ITOCTPOEHHOTO PEIIeHUs. Y 1aeTCst
TaK2Ke /J0Ka3aTb €IMHCTBEHHOCTb HETPUBUAJIBHOI'O DEIlleHUd B KjlaCcC€ OIr'paHM-
YEeHHBIX ITOCIEI0BATE/THLHOCTEN, NMEIOINX HEOTPUIATEIbHBIE 9/ TEMEHTHI.

B konie paboTbl NPUBOJSTCS MPUMEPHI MPUKJIATHOTO XapakTepa JIst
COOTBETCTBYIOIIEH MaTpurbl Terinia u HeJTMHEeAHOCTH.



