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MICROWAVE ABSORPTION IN METASURFACES INDUCED
BY EDDY CURRENTS
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Efficient absorption of a metasurface composed of perpendicularly oriented
graphite “meta-strips” is experimentally demonstrated, with the length of meta-
strips being around half of the incident wavelength. The absorptance of the
metasurface under a normally incident electromagnetic field polarized along
meta-strips exceeds 90% in the spectrum of 8—12 GHz. The proposed metasur-
face is featured by wide incidence angle tolerance.
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Introduction. Microwave absorbers are of great interest due to many important
practical applications. Various types of electromagnetic absorbers have been suggested,
including the Salisbury screen [ 1], the Jaumann absorber [2], the Dalenbach layer [3],
cross mesh absorbers [4], etc. Recently, absorbers covering entire range of the
electromagnetic spectrum from the visible to microwaves attracted huge interest
due to many potential applications, such as microwave compatibility of devices [5],
sensors [6], bolometers [7], solar energy harvesting [8], and thermal emitters. In
addition, many military and space applications such as the creation of “invisible”
aircraft, the concealment of ground military radar systems, and the development of
anechoic chambers, require efficient microwave stealth surfaces and highly absorbing
structures operating in the 2-18 GHz frequency range. In this sense, the processing
of new materials that absorb radar signals has recently become an issue of great
importance requiring a great deal of research. On the other hand, the rapid development
of wireless communication technology has led to the widespread use of electronic
devices in various fields. This has contributed to an increase in electromagnetic
pollution. One can overcome this issue by utilizing microwave absorbing materials,
capable to effectively absorb electromagnetic waves and reduce the negative effects of
electromagnetic noise.
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Electromagnetic wave absorbers must have a number of specific characteristics,
for instance, independence of the absortion coefficient from the incidence angle and
polarization [9], frequency bandwidth of the efficient absorption [10], etc. A number
of methods have been proposed to design efficient absorbers in the terahertz [11],
microwave [ 12], infrared [13] and optical [14] spectra.

The creation of broadband absorbers based on metasurfaces in the microwave
has aroused great interest in recent years [15, 16]. As a result of their action, the
absorbed electromagnetic energy is converted into thermal or other types of energy.
As a result of the interaction of electromagnetic waves with the absorber, reflection
and transmission of electromagnetic waves is practically absent. An efficient absorber
must have light weight, small thickness, easy method of production and wide incidence
and polarization angle tolerance.

The first metamaterial-based microwave absorber, proposed by Landy and co-
authors in 2008, opened up common strategies to design absorbers with the small
thickness [17]. Since then, many researchers have focused on the design and devel-
opment of metamaterials, and particularly their two-dimensional counterparts also
calledmetasurfaces, ranging from the microwave to the optical [18]. However, because
of their resonant nature, absorbers utilizing the metamaterial concept are usually
narrowband.

Sample and Experiment. The achieved efficient absorption with the proposed
metasurface is conditioned by relatively high absorption cross-sections of individual
meta-atom elements, on the one hand, and a favorable phase shift of the reflected
electromagnetic field from the metasurface on the other. The system consists of
graphite strips periodically distributed on a dielectric layer. Graphite layer was created
by continuous hatching of the rough surface of a piece of an otherwise transparent
dielectric. Due to the applied pressure while hatching, a continuous graphite layer
was created on the dielectric surface with the estimated thickness being around 50 pm.
Then rectangular strip-like pieces were cut from the graphite-coated dielectric. As the
final step, an array of narrow rectangular cavities was defined on the surface of the
dielectric substrate by applying a laser patterning technique and the fabricated strips
were carefully placed inside the cavities. Such a technique ensures the uniform nature
of the meta-atoms. The system of periodically placed graphite tapes on the dielectric
surface provides maximum absorption of the metasurface and minimum reflection
from it Fig. 1.
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Fig. 1. The schematic of the metasurface array and the unit-cell dimensions.
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The studied metasurface differs from other similar absorbers by two main
features. First, the surfaces of the conductive “meta-strips” forming it are oriented
not parallel but perpendicular to the metasurface. Secondly, the metallic “metatapes”,
in our case, have been replaced by graphite. Graphite is one of the exceptional
materials whose real and imaginary parts of the dielectric permittivity in the microwave
frequency range are close in values to each other. This makes it possible to control
the reflection phase, which is of fundamental importance in the studied process. It is
also noteworthy that the longitudinal dimensions of the tapes are of the order of the
length of the incident wave. The schematic sketch of the experimental setup is shown
in Fig. 2.

(2)

Fig. 2. The schematic sketch of the experiment: (1) computer; (2) vector network analizer
(VNA); (3) horn antennas; (4) metasurface.

The experiments were carried out by analyzing reflection S1; and transmission
S»1 parameters of the metasurface derived by a R&S VNA ZNB20 vector network
analyzer. The system consists of two horn antennas, facing one another at a distance
of 50 cm, which are respectively connected to the first and second inputs, and samples
are located in-between the antennas. Identical horn antennas connected to the inputs
operate in the frequency range from 7.8 GHz to 12.4 GHz.

Results and Discussion. The results were recorded and processed by a
computer connected to the VNA. We used signal reflected from a metallic mirror
as a reference for the reflection S;; coefficient of the metasurface, whereas for the
transmission S7; parameter was compared with that of the free space (Fig. 3). The
incident electromagnetic wave is polarized along the longer sides of strips.

Experimental results show that in the case of normal incidence of a microwave
on the metasurface, the absorbed power exceeds 90%. The absorbance decreases by
approximately 10% when the incidence angle is 30°
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Fig. 3. Experimental results of the transmission S71 (left) and reflection S11 (right) parameters
of the system without (blue lines) and with (red lines) the sample.

It is obvious that the structural features of the metasurface significantly con-
tribute to absorption. In particular, it is of fundamental importance that in the structures
the surfaces of the tapes are perpendicular to the metasurface. In our case, when a
wave perpendicularly incident to the metasurface is polarized along the tape, the
magnetic field of the wave penetrates the graphite tape. As a result, eddy currents are
formed, which lead to increased Joule losses. In this case, the power of Joule losses
can be estimated according to the formula [19]:

1 Ba’
P=—Ah———
16 12+a?
here A is the conductivity; [ is the length; a is the width; & is the thickness of the
metatape; o is the frequency of the applied field; B is the magnetic induction. After

simple transformations from (1) one obtains:

w’B?, (1)
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here V is the volume of the metatape; d is the thickness of the skin layer; c is the
speed of light; S is the wave energy flux density. With d = 50 um and the indicated

. . . P
parameters, for the absorption cross section we obtain: 6 = — ~ 5- 10™*m?.

This value is approximately ten times greater than the cross-section area of the
unit cell on the metasurface, and as the experiment shows, is optimal for absorption.

Conclusion. Thus, under a normal incident microwave electromagnetic field,
the absorption of a metasurface composed of rectangular graphite strips oriented
perpendicular to the surface normal of the substrate exceeds 90% in a broad frequency
range of 8—12 GHz. This number decreases by approximately 10% when the incidence
angle is 30°.

It is obvious that the structural features of the metasurface significantly con-
tribute to the absorption power. In particular, it is important that in the considering
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structures, the surfaces of the graphite tapes are perpendicular to the metasurface. In
our case, when a wave perpendicularly incident to the metasurface is polarized along
the tape, the magnetic field of the wave penetrates through the tape. As a result, eddy
flows are formed, which lead to Joule losses. Research has shown that when tape
lengths are close to half of the length of the incident wave, more favorable conditions
are created for effective absorption.
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dwl gpuwigyud Juinwip ghipuquigmd t 90%-p hwewpimpynibitph 8-12 GHz
nhpnypnd b hwdbdugpupwp phs £ jujwd wbydwd wblyjnibhg:

7. C. AMBAPSIH

MUKPOBOJIHOBOE IIOIVIOINEHUE B METAIIOBEPXHOCTHAX,
OBYCJIOBJIEHHOE BUXPEBBIMI TOKAMUI

OKCIIEPUMEHTAIbHO ODHAPYKEHO 3(DPEKTUBHOE TOIVIOIIEHNEe MeTa-
[TOBEPXHOCTH, COCTOSIIIEH U3 IPpadUTOBLIX “MeTaleHT", KOTOPbIE PACIOJJIOXKEHbI
HNEepHIeHIUKYJ/IAPHO K Ha,ZLaIOH_LeI'?‘I BOJIHE U JJINHa KOTOPbBIX 6.HI/I3K8, K IIOJIOBUHE
JUTMHBI 9TO# BOJHBI. MOIIHOCTD TOTJIONIEHNST MUKPOBOJIHOBOTO H3JTYICHMUS,
MTOJITPU3UPOBAHHOTO BJIOJIb JIEHTHI, DU HOPMAJILHOM HAJIEHUN HA METAIlOBEPX-
HocThb npesocxoauT 90% MONHOCTH M3/IydYeHns B Auana3one 4actor 8—12 GHz
U CPABHUTEJIBHO MAJIO 3ABUCHUT OT yIJIa, MAaJICHUS.



