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The mathematical investigation of large-scale biomolecular sequences is being
carried out by analyzing the properties of events arising in such sequences. This
survey is devoted to discussion of results in this field. Based on general empirical
facts being fulfilled for all frequency distributions, we discuss the axiomatics
suggested by J. Astola and E. Danielyan.

The axiomatics postulates the regular variation of frequency distribution with
asymptotically constant slowly varying component, the form of its shape, and the
stability by parameters. The verification of the axiomatics fulfillment for well-
known frequency distributions is done.

The paper describes also methods of construction of new parametric families
of frequency distributions. These methods are: usage of stationary distributions of
birth-death process, special functions, stable densities, etc.

The problem of stability by parameters is formulated the results on stability by
parameters in terms of various classical metrics are given. The conditions of
regular variation for different families of frequency distributions are formulated.

Keywords: frequency distributbiomion, olecular sequence, regular variation,
convexity, stability by parameters, asymptotic expansion.

1. Introduction. Discovering the evolution by investigating the variety of
large-scale biomolecular systems there is no other way but to characterize the
frequency distributions (FDs), say { P, }, of events being important for systems’
functioning. The variety and diversity of such systems do not allow to figure out
and suggest a universal approximation for FD, i.e. suggest a universal model,
which might be suitable in all possible situations. Based on huge datasets of
biomolecular systems it has been possible to extract only some common
information (statistical facts) being applicable almost to all situations for empirical
FDs. Those are:

1. { P, } has a skew to theright, P,>0 foralln, 2P, =1.

The conception of skewness for biologist is based on intuition and on the
shapes of graphs of empirical FDs. The quantitative aspects of the skweness
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conception were not even exploited. Only for Power Law and Pareto Law defined
below the parameter p was declared as a measure of skewness.

2. { P, } exhibits Power Law behavior as n — 4o (see [1-6]).
Random variable (RV) & >0has Power Law, if (P denotes a probability)

P =P&=n=c(p)n”, 1<p<+x, n=>1, c(p)z(Zn_p)_. (1.1)

nxl
The Power Law is used for estimation of the connectivity number in
metabolic networks [2], of the rates of protein synthesis in protein sets of proka-
ryotic organisms [7], of the number of expressed genes in eukaryotic cells [8, 9],
of DNA sequencing structures [9], etc.
The Power Law is of interest in self-organized growing biomolecular

networks, because of its scale-invariant property: P, = (c( p))_1 P, P, for integers

n21l, s21, m=n-s. Self-organization means, that if we know local FDs on
successive two fractals, then we may extraporate the FD for all system [10].

3. The log-log plot (logP, versus logn) of most empirical FDs {FZ}

systematically deviated from the straight line and show the upward/downward
convexity [1-6].

That is why many new statistical FDs have been proposed. Those are:
Pareto Law (generalization of Power Law)

P, =c(p,b)(n+b)_p, -l<b<+4w0, I<p<+o0, n>1,

c(p,b)z(Z(n +b)_pj_ (see [9]); (1.2)

n1

Warring Distribution

P =(1—EJHL]‘_1, O<p<g<+w, nzl, P=1-L etc. (13
q)ka q+k, q

Constructing new FDs the advantage is given to parametric ones, because by
changing the parameters one hopes to find out the best approximation for unknown
FD.

4. The small changes in environment do not have a dramatic influence on the
structure of biomolecular system.

We may call this fact the adaptivity or the robustness.

We may trust or not assumptions of statistical models that lead to different
empirical FDs for the events occurrence number in biomolecular systems. But, due
to the probability theory, the replacement of observations’ independence in models
by various type of weak dependence cannot have essential impact on the behavior
of P, for large n.

Anyway, statistical models even being important do not describe the
functional mechanism of biomolecular systems.

2. On the Mechanism. The dynamic of the biomolecular large-scale systems
many authors try to explain with the help of birth-death models with various types
of intensities. Their stationary solutions generate skewed to the right distributions
as it requires the empirical fact 1.
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In general, the development of any evolutionary large-scale complex biomo-
lecular system is a result of two fundamental phenomena: Darwin natural
selection, random mutation. The functioning is explained with the help of standard
birth-death process [11, 12], say

{é(r):t20}, 2.1)
which is a homogeneous Markov Process with continuous time and countable
number of states 0,1,2,... Moreover, conditional probability F,(#)=P(S(s+1)=
= j/&(s)=1i) doesn't depend on s, and for t — 0

Poy(0) =4t +0(t), Pyyy(t) = Ayt +0(1) , i=0,1.2,.... Bi(H)=0(t),

1

i-j|>1,
ﬂ’i >0’ Hiy >0.

Among the numerous publications devoted to birth-death models we like to
point out a pioneer paper of Yule [13], paper of Simon [14] and some recent ones
(see, for instance, Granzel and Schubert [15], Bornholdt and Ebel [16], Oluic-
Vicovic [17], Kuznetsov [18], Astola and Danielian [12, 19]).

The Yule’s birth model is designed to describe the evolution of new species
within a genus. Its stationary solution has the Power Law as a limit case.

The Kuznetsov’s birth-death model describes the expression process of the
genes in the eukaryotic cells, which exhibits a strong stochastic component (SSC),
a chaotic movement (CM) of mutation, and a skewed FD of the number of events.
In the model coefficients of the process are linear.

The latest one, birth-death model by Astola and Danielian gives a wide
generalization of previous models. Here the coefficients are non-linear and the
stationary solutions present FDs of moderate growth, i.e. lim(P,,/P,)=1.

H—>0

The stationary distribution of the process (2.1) exists iff

SI1e, <+o 2.2)

n2l k=1
with &, =(2,,/ u,), n>1, and takes the form

P.=p[]e. Poz(nzﬁekj_ . 2.3)
k=1

n21 k=1
{€,}; presents asequence of ratios of "birth" and "death" coefficients.

Let us interpret the process (2.1) as expressed genes process in the
eukaryotic cells, which exhibits a SSC, a CM. It is a discrete process with many
protein coding genes in an "off" state. The production of the mRNA occurs in
sporadic pulses with specific mRNA transcripts starts from initiation of the
transcription of the mRNA molecule of the specific gene at moment zero. Then the
mRNA molecule exports from nucleus to cytoplasm of the cell where the transcript
is degrades. It leads to a new mRNA copies and degradation of transcripts.
We indicate the gene expression level by integers n=0,1,2,..., assuming that
it is a random process, and denote its distribution at a moment ¢ by

{P (1)} = {P (&(r)= n)} . The process is described as a standard birth-death process

n

(2.1) and §(t) denotes the random number of mRNA transcripts per a cell in
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transcripton at a moment ¢. This mechanism realize the way how molecules are
chosen to be included into organism over time. It is a mixture of molecular
sequences being before in organism and new ones, so called mutant new sequences

} of “birth”
and { un} of “death” do not depend on ¢ and lead to stationary solution (2.2),

from other organisms. In “stable” evolution process the intensities {i

n—1

(2.3). The summarized intensities take the form

A=a+A , u,=b+u, n>1, 2.4)
where a>0, b>0 and A, u’ present the intensities of CM and SSC (2.4) at state
n. Here ) >0, u >0, lg?ol; = llg}oy; =+0.

3. General Representation. The empirical fact 1 is enough for the following
conclusion: any FD {Pn} may be presented in the form (2.2), (2.3) (see [20]).

Indeed, due to fact I, for n>1 we have

n—1
p=pfTh.

k=0 L}

Denoting ¢, =(P,/P,_;), n=1, we come to the first equality in (2.3). The
last equality in fact I leads to the last equality in (2.3). Now, F,>0 is equivalent
to (2.2).

The reverse statement is also true: any distribution of the type (2.2), (2.3)
satisfies empirical fact I.

According to variety and diversity of biomolecular sequences new
parametric FDs were needed. Kuznetsov suggested three-parametric Kolmogorov-
Warring Distribution [18]. Astola and Danielian built three-parametric Regular
Hypergeometric Distribution [21], which takes the form

pop PR BtR) L TG=PITG=p)
" (1K) (g +k) r@G-p-p)I@)

0<j;1+j;2<q‘<+oo,

3.1)

where I”(-)denotes the Euler's Gamma-Function.

Several variations of three-parametric Regular Pareto type Distribution have

0
been proposed in [22-24], which finally acquires the following form ([[=1):

m=1

P =C(pbe)——— 1+ —"1 | az1,
(}’l+b)pm:1 (m-i-b)p

(3.2)

-1
1 = c—1
C(p,b,c)= 1+ ,0<c <40, —1<b<+00,1< p <+0.
(prbre) {Zﬂn+bf£1( (m+bf]] g

Easily seen that from (3.1) for p, =1, p, = p,q=q+1, we get the Warring
Distribution (see (1.3)), and from (3.2) for =1 we obtain the Pareto Law
(see (1.2)).
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Although the FDs (3.1), (3.2) were constructed using other principles than
the stationary solutions of standard birth-death process, but it is clear that they can
be presented in the form (2.2), (2.3). Note that for FDs (1.1), (1.2) and (3.2) we

have to put F, equal to normalization factor, and find F, from the equality
> P, =1. After this manipulation it is obvious that, for instance,
_(Bi+n)(D,+n)
R Y2
(1 + n)(q + n)

p J—
5n+1:(1_ ! j 1+ c-1 ,n>0, in case of (3.2),
n+b+1 (n+b)p

where {en} is a sequence of coefficients in general representations (2.2), (2.3) of
these FDs.
For m=>1 consider m-parametric FD {P,(c, )}, where &, =(c;,¢;,...,C,,)

,n>0, in case of (3.1),

and ¢, i=1,m, are parameters. It is convenient to choose parameters to be

independent, and ranges of their changes be also independent. It means that there
are no relationships among them of equality and of inequality types respectively.

All FDs presented above have independent parameters. But for Warring
Distribution and Regular Hypergeometric Distribution the independence of ranges
of parameters’ changes does not take place. The situation is improved by making
the linear transformations of parameters:

p=q+l-p,p=p and p=q+1-p —p, py=p, P, =D, (3.3)
in the first and in the second cases correspondingly.

Definition 1. We say that {Pn (Em )} is well-defined, if the coefficients
&,-..,€, of its general representation uniquely define parameters c,,...,c,, .

Theorem 1 (see[25]). All above presented FDs are well-defined.

4. Regular Variation. Due to characteristic property P, =Ln ",
L=c(p)eR" =(0,+x),n>1 (see (1.1)), the empirical fact 2 has been interpreted
in mathematical sense in [19, 22] as a regular variation of FD.

Definition 2 (see [26, 27]). The sequence {X,} of positive numbers varies
regularly as 7 — +o0 with exponent o € R' =(—o0,+), if for any integer s> 2

lijg(X»n/Xn):Sa' 4.1)

The case o =0 presents the slowly varying sequence, which is usually
denoted by {L(n)}

The Definition 2 is equivalent to the representation X, =n"-L(n),n>1,
with some arbitrary chosen L (0) >0.

In general, the sequence {L(n)} may show quite different behavior as

n— +0.
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Lemma 1 (see [28], p. 6-8). Let 0< L <L <+oo. Then, there is a slowly
varying sequence {L(n)} such that L = lim L(n), L = limL(n).
n—>0

H—>00

But, according to the properties of all before known FDs, in [23] the
following general property of FDs was suggested.

Property 1. FD {P,} varies regularly as n—>+o with exponent (—p),
1< p <+, and exhibits an asymptotically constant slowly varying component
(ACSVC) L, i.e.

P =L(n)-n’",n>1, and lii?OL(n):LeR+. 4.2)

For example (see [22, 23]), the following statement holds.

Theorem 2. The FDs (3.1) and (3.2) satisfy Property 1 with

F(é‘f’l)'r(@_f’z) 1

p:q’\"rl—f) _ﬁ ’L: ~ ~ : ~ ~ ~ 5
b r(p)I(p) IT(G-p—p)

p is the parameter in (3.2), and

L=C(p,b,c)H{1+ C_lp].

n>1 (n + b)
In [29] the following 2m-parametric FD was considered:
nom k + i)i

B, =RIIII

=i K+ in

’nZL i)i>0’éi>09i:@

(4.3)

1kt i K+ 4,
Theorem 3. The FD (4.3) exhibits the asymptotic expansion

L M 1
# Zn—p+F+0(Fj,n—)+0®, (44)

-1
n_m k+"_ mo R
A1 ZAMEL ] L p-Sa-)o1

where

+1) .
T+ eR", (4.5)

M=-L—=———¢e(-x,0).

The FD (4.3) is a generalization of (3.1). Theorem 3, in particular, says that
{P,} of type (4.3) varies regularly as n—> +o0 with exponent (—p)and exhibits
ACSVC L (see (4.4), (4.5)), i.e. satisfies Property 1. This is the content of the first
term at the right-hand-side of expansion (4.4). The second one gives additional
information on “smoothness” of {1—;} , which agrees with the empirical fact 4.
Indeed, the “smoothness” of continuous functions comes to light, if they can be
presented in the form of Taylor’s Series. The expansion (4.4) is the analog of such
“smoothness” for a discrete case.

The asymptotic expansion (4.4) is natural for all known FDs. That is why we
may even postulate it as an Extended Property 1 for FDs.
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Denote by m, the moment of order aeR"of FD{P,}. If {P,} varies
regularly with exponent (-p), 1<p<+w, then m, <+ for a<p-1 and

m, =+ for a>p—1(see [26]). If {P,} exhibits ACSVC, then m,, =+oo. The

Problem of asymptotic behavior of truncated moment u,,(x)=3 n’"PF, as

n<x

X — +oo arises.
Theorem 4 (see[22,30]). Let FD {P,} satisfies Property 1. Then,

M, (x)=(L-Inx)(1+0(1)), x = +0. (4.6)

For concrete FDs even more terms of asymptotic (4.6) can be obtained.
For instance, for FD (1.3) (see [30] and [22], p. 140-145): if g— p=1 and

pis an integer, then p,(x)= p{lnx+(C—A1 (p)+2x~" +0(x_2)}, x — +oo, where
P

A4(p)=1+Yn";if g—p=2 and pis an integer, then
n=l1

2p-1
X

My (X)=2p(p +1){1nx+ (C-4(p)+

3p +4 L 1 ,
+> n" . Everywhere C denotes the Euler’s constant.
2(p + 1) n=1

5. Convexity and Monotonicity. For a sequence {X n} of positive numbers

+O(x‘2)}, X —> 400,

where 4, (p)=

we consider the following two types of convexity: for n=0,1,2,...
1) X,,-2X,,+X,<(>0) upward (downward) convexity,

2) (X, /X,..)<(>)(X,/X,,,) log-upward (log-downward) convexity.

n+l
The Problem of comparison of these convexities arises.
Lemma 2 (see [24, 31]). The upward (log-downward) convexity of

{X,}implies its log-upward (downward) convexity.

For {X n} the existence of a pair “upward and log-downward convexity”
contradicts Lemma 2. But the pair “downward and log-upward convexity” may
exist (see [12], p. 60-61).

Let {X,} and {Y,} be positive sequences. Obviously, if {X,}and {Y,}are
log-upward (log-downward) convex, then {X .\ Yn} is of the same type.

What can we say about {X,+Y }? It turns out that, for instance, the
following statement holds.

Lemma 3 (see [31]). Let {7,}={Y,/X,},n>1, be downward convex. If
{X,+7Y,}decreases and is log-downward convex, then {X, +Y,}is of the same

type.
Lemma 2 is of interest in the way of constructing FDs with given properties,

because of the following statement. Let pe(l,+0),LeR",s>1 be an integer,

M, eR' \{0}~,z’=1,_s,0<oz1 <a,<..<a,,are given.
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M.
P+

1
a;

L S
Corollary 1. The sequence {—p +
n i=1

} decreases and is log-downward
on
convex starting from some index n,>1.

With the help of this statement the following general result is proved.
Theorem 5 (see [31]). There is a decreasing and log-downward convex
FD {1—';} satisfying asymptotic expansion with above a priori given constants
L & M, 1
P=—+ s +0(np+asj’n_>+°o 5.1

n
n® SOn

(compare to (4.4)).

Using the method developed in [31], it is possible to build FD of type (5.1)
with any finite number of log-upward/log-downward convex pieces in its graph,
the last of which decreases and is log-downward convex.

Very often it is easier to prove such kinds of statement using continuous

analogs (CA) of the sequence {X,} of positive numbers. We say that the function
f(t) defined on [0,40) is a CA of {X,}, if /' is continuous on [0,+), and
f (n) =X,,n>0. The “smoothness” of fallows to apply methods of Mathematical
Analysis.

The linear CA (LCA) of {Xn} sometimes is more preferable for other

purposes among all other continuous ones. The shape of its graph is formed by
possibly minimal number of convex pieces.

Definition 3 [22]. We say that f(¢) defined on [0,+) is the LCA of
{X,},if (a) f(n)=X,,n=0; (b)f(t) is continuous on [0,+); (c) /() is
linear on each [n,n+1],n>0.

It can be easily proved that {X n} and its LCA are unimodal (or not) with

the same mode simultaneously, and have the same intervals of monotonicity and
convexity.
Now let us discuss the properties of monotonicity and convexity of known
FDs. The famous ones (see (1.2), (1.3)) are decreasing and log-downward convex.
For FDs (3.1), (3.2) constructed at the second stage of development we
combine the results from [23] and [24] in the following statement.
Theorem 6. FDs (3.1), (3.2) are unimodal. Their graphs are formed by
no more than two monotone, and no more than three log-convex (convex) pieces.
6. Around Empirical Fact 3. Due to substantiated Property 1 (see (4.2)),

log P, :(_p)+w forn=1,2,..., (6.1)
logn logn

where in case of Power Law L(n)=c(p) doesn’t depend on n (as a rule, the
biologists deal with the log-log plot of {1—;} ). According to empirical fact 3 one
may conclude that the upward (downward) convexity of (loan / logn) is only the

result of piecewise convexity of {logL(n)} , where, obviously, the last piece is

downward convex. Note that 1im(10gL(n)/logn):0, which follows from the
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following property of {L(n)} : for any ¢ €(0,1) and n large enough the inequality
n® <L(n)<n® holds. Now, writing (6.1) in the form logP, =(—p)logn+
+logL(n) we conclude that {logP,} is piecewise convex, and may affect on the
type of convexity of {1—;} only in initial finite interval. But in finite interval the
number of log-convex (convex) pieces for {F;} cannot be more than finite. So, this

number on [0,+oo) is finite too. Next argument: any biomolecular system comes to a
structure with minimal “energy expenditure”, which affects on FDs. The situation,
when {F;} has more than one log-convex (convex) piece under “slow mutation”

leads to unnecessary “energy expenditure”. (The famous FDs (1.1), (1.2), (1.3) have
exactly one log-downward (downward) convex piece). But building the mathema-
tical theory of FDs in bioinformatics with arbitrary speed of “mutation” one has to
allow for FDs to have more than one (at least two or three) log-convex (convex)
pieces. Such a situation may be explained with the help of evolution process’

functioning. Indeed, the value A’ — 1 (see (2.4)) as n—> +oo creates nonlinear
deterministic “shift” over time » in new transcripts. If (l;_l / /,z;) <1 over time n,

then the SSC manages the situation. The deterministic “shift” of SSC leads to the
log-downward (downward) convexity of {1—;} . The CM doesn’t take part in stabili-

zation process. If A, / u, ~1 for “large” massif of n, then the condition (a/b)<1

(see (2.4)) stabilizes the process. The CM gets possibility to make observed affect on
the process. It’s maximal influence can be easily seen on the initial massif on indices,
around the mode (now intensities of SSC and CM are comparable). Just around the

mode log-upward (upward) small convex piece of {P,} appears.
Above said and Theorems 5, 6 we propose for the following
Property 2. FD {1—;} is unimodal and it’s graph is formed by no more than three

log-convex (convex) pieces, the last of which is log-downward (downward) convex.
The Property 2 with convex (log-convex) pieces has been suggested in [23]
(in [24]). For the FD (4.3) the following statement takes place [24].

Theorem 7. Let for vectors (py,...p,) and (§,,...q,) in (4.3) the
numbers p,,, and c}(i),izl,_m , present the i-th order statistics respectively. Then
the conditions.

f)(l) < c}(l),..., fa(m) < (j(m) (6.2)
are sufficient for {Pn} of type (4.3) to be decreasing and log-downward convexity.

The following Problem stays unsolved: find necessary and sufficient condi-
tions for the fulfillment of Property 2 with one, two, three log-convex pieces for
FD (4.3).

Let {%} be increasing sequence of positive numbers with lim¢, =+,

H—>00

lim(¢,,,/@,)=1. Then the sequence {w,}, where y, =1+(ug,/b), u>0,

b>0, n>1, possesses the same properties.
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A deep investigation on the stationary distribution (2.2)-(2.3) with
Ay =A@, s 1, = pp,,n=1, and with A7 =2A¢, u;=up,,n=1, in (2.4) has
0
been done in[12, 19, 32]. The following FD was extracted [HEIJ:

m=l

-1
P, :[-{)iﬁ[l+c—_lj,n21, P, =[1+cziﬁ(1+c—_ln (6.3)

l//n m=1 l//m n>1 l//n m=1 m

with either 0<c<1,21//;1 :+oo,or0<c<+oo,Zt//n"1 < +00.

Theorem 8. Let y,=1,{y,} increases, lim (n/y,)=0. Then:
n—+%

1. {P,} varies regularly with exponent (—p), iff {y,} varies regularly with
exponent p.

2. If 1< p<+oo,then Yy, ' <+ow.

3. {P,}and {y,} exhibits ACSVCs L and L, simultanecously. Moreover,
L=(R+c-1)/L,.

The statements 1 and 2 in Theorem 8 are established in [12], the statement 3
is proved below.

Put  a, =y, P..,n>0 (a,=y,F,=F). Then, due to (6.3),

n-1
a,,=a,+(c—1)P,=..=Fc+(c—1)Y B, . So, we obtain the reverse equalities
k=1

v, :[P0c+(c—1)

-1

3

ﬂj/Pn,nzl. (6.4)

=~
Il

1

Since, w,=n"L(n),P,=n"L(n), therefore, from (6.4) we obtain
n—1

L(n)= [Poc +(c —1)Zij/L1 (n),n>1. Letting n — +o0 we prove the statement 3.
k=1

Theorem 9 (see [12], p. 54-55,67-68). Let the conditions of Theorem &
hold, and {y,} varies regularly with exponent p e (1,4). If {y,} is downward
and log-upward convex, then {Pn} decreases and is log-downward convex.

According to Theorems 8, 9 under the conditions of Theorem 9 the FD (6.3)
satisfies Properties 1 and 2.

7. Back to General Representation. Below let the sequence {en} of positive
numbers be the sequence of coefficients in general representation (2.2), (2.3) of
FD {P,}.So, &, =(P,/P,,),n>1.1t follows that: (a) for a given n we have &, > ()1,
iff P, >(<)P,_;; (b) {e,} increases (decreases), iff {P,}is log-downward (log-
upward) convex. Thus, one may reformulate the Property 2 in terms of {en}.

Property 2°. {,} is formed by no more than three monotone pieces, where
the last one increases and is located under the straight line y=1.



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, Ne 3, p. 3-22. 13

Now assume that the Property 2" holds for the FD {I:;c} . We are going to
study the question of task on convergence of series (see (2.2)), i.e.

STTe <+ (7.1

n2l k=1
for FDs of moderate growth, which means that lim (P, / P, )=1.In terms of {¢,}

H—>00
it is equivalent to the existence of limit

limeg, =1. (7.2)

n—>00
Any regularly varying FD {P,}, due to Property 1, is a FD of moderate

growth.
To obtain a sufficient condition for the validity of (7.1) one can use the
Kummer’s Test (see 3.37, p. 116-117 [33]). Namely, let D, be a sequence of

positive numbers such that the positive limit (finite or infinite) exists

lim(D, ,&," =D, ). Then (7.1) holds.
Due to (7.2), one may replace the last limit by the following one
lim(D,_, —¢,D,)>0. (7.3)
It can be easily seen that (7.3) holds, if
g, =1 —%+o(iaj, n—>+o, peR",aec(0,l) (wetake D, =n*), (7.4)
n n
en=1—£+o(lj,n—>+oo,1<p<+oo (wetake D, =n). (7.5)
n n
This test was used in [34] in order to prove (7.1) for
enzl—l— ! ——— ! - P (1+0(1)), n— 40,
n nlnn ninn...Inln..Inn - ninn..Inin.. Inn
—_— —_——

K K+1
where K > 0is a natural number and p e (1,+).

All considered cases of {en} ’s asymptotic behavior are examples of FD
{P,} of moderate growth. Now let’s discuss the Property 1.

Theorem 10 (see[20]).

1) The condition (7.5) implies the regular variation of {I:;c} with exponent
(=p).

2) Under the condition (7.5) the existence of ACSVC for {Pk} is equivalent
to the limit relation

lim 2(1—5k ‘%)ZO' (7.6)

n—>+00 an
Let the following asymptotic expansion with a € (%,1) holds for {P,}:

P:£+M

"o opt

ro L) woen LeR, MeRl0l a)
n
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which in particular implies that {1—';} varies regularly at infinity with exponent
(—p) and exhibits ACSVC L, i.e. the Property 1 takes place. We easily verify that

( 1jp. 1+Rn‘“+o(n‘1)

) T R(n=1) wo(n)

o 22l oo

where R=(M/L). Various forms of {P,}’s asymptotic expansions, similar to

(7.7), may lead to the form (7.4) for {gn} , which allows us to formulate the reverse

to statement (1) in Theorem 10.
In particular, let’s replace the Property 1 by more strong but also natural

Improved Property 1. For FD {PB,} the asymptotic expansion (4.4) holds.

The Improved Property 1 implies the asymptotic expansion (7.5). Note that
for all presented above FDs the Improved Property 1 takes place.

Several relationships between {I:;c} ’s and {3n} ’s asymptotic expansions
are obtained in[31, 35].

For investigation of the properties of FDs {I:;c} it is natural to formulate them
in terms of {¢,} .

Property 1* {g,} satisfies asymptotic expansion (7.5).
8. Continuity by Parameters. The simplest form of empirical fact 4 with
respect to parameters of FDs in mathematical sense is the continuity of { } by

parameters. Sometimes FDs are given in the form of their Generating Functions
(GFs).

Let us consider the finite-parametric FD {P } The parameters are
c

¢pennC,, and ¢, =(cy,...,c,, ). The GF of FD { ( m)} is defined as follows: for

any x €[0,1]
(x cm) ZP (cm) . (8.1)

Having GF (8.1), it is possible to establish the continuity of {Pn (c, )} by

parameters ¢,...,c,, with the help of Continuity Theorem for GF (see XI.6,
p. 262 [36]).

Continuity Theorem. Let {Pn(k)} be a sequence of FDs. Then, in order

P® 5 P as n—+oo for fixed n it is necessary and sufficient the following
convergence:
P.(x)= ZP x" —>ZPx =P(x) as k —+oo forany x €[0,1].

n>0
This idea has been developed in [22], p. 33-36, for famous FDs. For
instance, in case of FD (1.3) with the help of hypergeometric series (see 9.100,
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p-1040, [37]) and its integral representation (see 9.111, p. 1040, [37]) we have for
GF of (1.3):
|

P(x,p.q)= (q—p).g(l—t)q'1 (1-0x) " dt. (8.2)

Due to Continuity Theorem, if p— p', q—q', then the GF (8.2) with
parameters p and g tends to GF (8.2) with parameters p' and ¢', ifitis possible

to pass to the limit under the sign of integral, which is the case in this situation.
In some cases the integral in (8.2) may be evaluated in a closed form. Due to
9.121.24, p. 1041 [37], for p=1/2, g=1 one may obtain

P(x,%,lj=ﬁ, xe[0,1] (see also [38]).
9. Stability by Parameters. Let {Pn (c, )} be m-parametric FD with
¢, €2 cR". In general, the stability property by parameters is formulated as follows:
{Pn (c, )} is stable with respect to parameters ¢,,...,c,,

in terms of some classical metric, say p. 9.1
Here explanations are needed. All non-trivial metrics in R" are equi-

C,—¢C

m

, where ¢, =(c;,....c,) €2,

valent to the following one Z‘ck—c}c‘z
k=1

'

¢, = (ci,...,c;n) € Q. In the set of sequences {Pn (C, )} with different collections of

'

parameters ¢, one has to introduce some classical metric p({Pn (c, )},{P (c )})

n m

“suitable” to {P,(,)}. For simplicity we write p(Em,E;n) instead of

p({P,, (c, )},{Pn (E,'n )}) .Below K is a convex compact in 2.

Definition 4. We say that FD {P, (¢, )} is p -stable with respect to ¢;,....c
if for any K < Q

m?°

o lm P (6-8)=0 9.2)

uniformlyon ¢,, ¢ €K .

Then, the empirical fact 4 for finite-parametric FD with respect to
parameters takes the mathematical form (9.2).

The form of K may be chosen simple, if parameters and ranges of their
changes are independent. Parameters (ranges of their changes) are independent, if
there are no relations of equality type (of inequality type) among them.

All presented above FDs have independent parameters. But for FDs (1.3)
and (3.1) the independence of parameters’ changes ranges doesn’t take place. The
situation can be improved with the help of linear transformations:

p=q+1-p, p=p forFD(1.3); p=q+1-p,—p,, py=p,, p,=p, for FD(3.1).
Now, for the FD {R1 (c, )} with independent parameters and independent
ranges of their changes one may choose K in the form
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K= !j[gi,c_’i], (9.3)

where (¢,....c,) €2, (cf,...c),)e 2, ¢<g, for i=Lm.
The following metrics for {Pn (c, )} in bioinformatics are usually used [12], [22]:
5(Em,5,n ) =sup k;)(Pk (¢,)- B (Em )) . (Uniform Metric)
C > _.l'n = R’l _.ln - R’l _."n
e(cmc)g (¢,) (c)
The last one is the particular case with p=1 of [,-metrics, and, obviously,
5(¢,.¢,)<e(é,.c, ). Thus,if {,(c,)} is z -stable, then it is & -stable too.

(Metric in Variation ).

Generally speaking, the reverse statement to the last one is not true. But for
the FD (6.3) under the conditions of Theorem 8 it can be proved that

é(c,c’) = 1/28(0,0’) (see [12], Chapter 4).

The stability problems for introduced FDs in terms of ¢- and 6 -metrics are
in the center of attention of several publications [39—43].

It is of interest the following Stability Criterion for {Pn (C, )} in terms of
l,-metrics (see [22, 43]). We assume the following conditions hold:

1. The FD {Pn (c, )} allows a representation in the form

P(6)=(2,(6,)/2(2,)). £,(6,)20. n20.

2. Thereis ¢, € K such that for all n>0we have g, (¢, )=maxg,(c,).
ek

3. Thereis ¢, €K suchthaté, = I_nigg(Em ).

4. The FD {Pn (c, )} satisfies Property 1.

Let —p=-p(c,) be the exponent of {Pn(”m)} ’s regular variation and

p>(1/p(C,.))-
Theorem 11. {P,(c,)} is l-stable on K, iff

2,(¢,)-2.(2,)

Theorem 11 was applied to FDs (3.1) and (3.2) in order to prove for them the
[,-stability by parameters.

Another approach to stability of finite-parametric FDs has been suggested in
[44]. Tt is based on monotonicity property of functions in case, when FD may be
presented in the form of such functions combined by finite number of operations of
finite or infinite sums, product, ratio, convolution.

10. Semi-Group Property. We already mentioned that the Power Law (1.1)
is of interest in self-organized growing biomolecular networks, because of its
scale-invariant property. Trying to figure out other FDs for application here one
has to analyze the properties of such networks. Together with the self-organization

lim

‘Cm —Cp ‘*}0

=0 uniformlyon ¢, , ¢, € K for every n>0.
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there is the second peculiarity. The FD must be of the same type in united interval
as it is in each fractal forming the interval in order to extrapolate the FD in united
interval and in whole system. The fractals may be chosen with approximately equal
lengths in the way, which allows to postulate either the independence or some type
of “weak” dependence between the numbers of event’s occurrences on each fractal.
These random numbers are characterized by local FDs on fractals. Now, instead of
scale-invariance the semi-group property has to take place. In contradiction to
scale-invariance property, where the operation of multiplication is used, the semi-
group property implies that the convolution of FDs of the same type equals to FD
of exactly this type. Such semi-group property is intrinsic for normal, Cauchy’s,
Levy’s distribution functions and for many other very useful ones. The semi-group
property holds, for instance, for the four-parametric family of Stable Laws (see
[45, 46]). Moreover, the conception of regular variation and the semi-group pro-
perty for empirical FDs™ continuous analogs are closely connected and supplement
each other from the point of view of Probability Theory. It is just the time to notice
that Stable Laws not only satisfy semi-group property, but also Property 1.
Below we introduce more powerful than the semi-group property, and,
obviously, more restrictable property, which extracts the family of Stable Laws.

Definition 5. We say that distribution function § is stable, if for any a, € R',

b eR",i=12, there are numbers a € R', beR" such that

S| X% || 2% :S(x—a} xeR',
b b, b

where * denotes the sing of convolution.
Let us describe the parameters of Stable Laws. The first essential parameter

a€(0,2] is the exponent, which defines the exponent (—p) of Stable Law
density’s regular variation p=a+1.

Excluding Normal Law «=2any Stable Law o e(0,2) has infinite
variance.

Denoting by S, the Stable Law with exponent o €(0,2) consider its two
tails: S, (—x) (left tail) and 1-S, (x) (right tail) for x e R* . The second essential
parameter for S is asymmetry, i.e. the value of limit

B = tim 15 (¥) =S (=) e[-11]
o] -S (x) +S, (—x)
(the ratio of the tails difference and sum), which always exist. In other words, the
asymmetry is nothing else, but the measure of skewness for S (x). Due to

empirical fact I, we are interested in Stable Laws with maximal skewness to the
right, i.e. in S(x) with f=+1.

The remained two parameters (shifting parameter and scale factor) are non-
essential.

The next condition, which has to be fulfilled, if we want to use Stable Laws
in bioinformatics, consists in following. The extracted densities of Stable Laws,
which assumed to be continuous analogs of FDs, must be concentrated in [0,+oo) .
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Denote by S(x;a,3) a stable density with exponent a and asymmetry f .

For our purposes we may use not only S(x;a,f),0<a <1 (only in this
case S(x;a,1) is concentrated on [0,+)), but also 2-S(x;a,0),0<a <2, for
x€[0,+0).

The density S(x;,0) for xeR' is symmetric, so, 2-S(x;a,0) for
x €[0,+0) is concentrated on x e[0,+) and has skewness to the right.

Now, the following families of two-parametric densities

{fa,g (x)=0"S(x-07"a,1), 0<a<loe R+},
(10.1)
{fw (x)=207"8(x-07"";,0), 0<a <2, o eR"

are condidates to be continuous analogs of FDs (see [22]).

Finally, note that the densities (10.1) are formed by no more than three
convex pieces and are unimodal (see Property 2).

11. Disc retization of Densities. Besides the way of new FDs construction
based on standard birth-death process with various forms of intensities, there is a
couple of other known ways. The first one consists on construction based on dis-
cretization of densities, which are concentrated on [0, +oo) and satisfy Properties 1
and 2. We already have such an example: two-parametric Stable Densities (10.1).

Let f(t), t€[0,+x), be a continuous density satisfying Properties 1 and 2.

Definition 6 (see [22]). We say that FD {P,} of the type
n+l

P= [ f(t)dt,n>0, (11.1)

is the discretization of f.

It is very important that the discretization conserves the properties of
monotonicity, convexity, unimodality of the density f(¢), i.e. at least the
Properties 1 and 2 hold. It remains only to verify the Property 3.

Theorem 12 (see [41]). The discretizations of type (11.1) of densities
(10.1) are stable with respect to parameters o and o in terms of Metric in
Variation.

A slightly different form of discretization of Stable Densities was used in
publications [48—50].

_Jf()
n—zf(K),nzo, (11.2)

K>0
where f'(¢) presents the corresponding Stable Density.

Unfortunately, the closed form of Stable Densities is possible to obtain only
for normal, Cauchy and Levy Laws. For others there are only representations in the
form of convergent series [45, 46]. That is why above introduced types of discre-
tizations for Stable Densities lead to complex expressions. At the same time, the
Laplace Transform of Stable Density with asymmetry £ =1, due to Theorem 3.1,

p. 43 [46], always exists
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exp(—s“) for O<a<2,a#l, seR",

P, (s)zTe"‘“dSa (x)= (11.3)

exp(—s+slogs) for a=1,seR".

Here only one representative with given parameters of shifting and scaling
are taken. Also for any Stable Density the right-side Laplace Transform has a
closed form. We may demonstrate how it is possible to build FDs with the help of
Laplace Transform. Let

p(S)zTe_‘“f(x)dx, 5§20, (11.4)
0

be the Laplace Transform of continuous on [0,+00) density f(x)>0, which is
concentrated on [0,+oo) . It is easy to prove the following statement.

Lemma 4. The function p(1-z), 0<z<1, presents the GF of some FD.
Note that Lemma 4 is true, even if the lower limit in integral (11.4) equals to
some number —¢ , where @ € R™, and f(x) >0 is concentrated on [—a,+oo) .

Due to Lemma 4, one may suggest a new type of discretization, in particular,
based on Laplace Transform of Stable Densities (see (11.3) too).

From 1960s, after the appearance of a series of papers by Mandelbrot and his
successors, who sketched the use of Stable Laws in Economics and Biology, it
comes out that Stable Laws have to be attached to Special Functions of
Mathematical Analysis. Several Special Functions are connected with Stable
Densities [51]. For instance, let

X "
EO_(X) = nzom, oceR . (See [45])

be the Mittag-Leffler function, where I () denotes the Euler’s Gamma-Function.
Then (see, for instance, [46], p. 169)

aE,(=s) = [e XS (X 0,1)dX, $20.
0

12. Method of Special Functions. The way of FDs construction based on
different forms of discretizations of either Stable Densities, or their Laplace
Transforms may be referred as a variation of Method of Special Functions.

There are other ideas, whose realizations can be interpreted as variations of
Method of Special Functions. For instance, we search various Special Functions of
Mathematical Analysis, which have representations in the form of positive conver-
gent series and also Integral Representations. Then, forming the ratios of the n-th
term and the sum we construct the probability P, for the FD{P,} . In this way the
Warring, Hypergeometric, Pareto FDs and many other useful ones may be obtai-
ned. Let us illustrate this way on simple example of Warring Distribution (1.3).

Consider the hypergeometric series (see 9.100, p. 1039, [37]), which is a
Special Function:

(@),(B),

F(a,ﬁ,y,z):1+§mz (12.1)



20 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, Ne 3, p. 3-22.

for positive values of arguments, where (x) =x(x+1)---(x+n), n>0. The series
(12.1) is convergent in the following cases (see 9.102, p. 1040, [37 ]):
(a) 0<z<l; (b)1<z<+o, a+f-y<0; (c)z=1; a-f+y=>1.
The following integral representation holds for y > >0 (see 9.111, p.1040, [37]):
F(a,B.7.2) :Wiﬂ“(l —ty P A =12) " dt, (12.2)
where B(x,y) denotes the Beta Function.
P, n>1, of the form (1.3) means that, due to) P, =1, we have

n=0

(B)'=F(p,l,g+1,1)=

(12.1) and (12.2) were used. In our case the conditions (b) and y > § hold.
One more way for FDs construction, which may be characterized as an
addition to Method of Special Functions, consists in following. Let the FD {P,}

satisfies the general representation (2.3), (2.2) and Properties 1 and 2. We present
(2.3) in the form

1
f(l—t)q‘P‘ldt:(l—g)‘l, ie. B =1-(p/q), where
0

P, :Poexp{Zbg(l—cSn)}, o,=1-¢, n>1, (12.3)
=

where, due to Properties 1, 2 and their various improvements in terms of {en} , We

have limé§, =1, {8,}is monotone starting from some index ny, etc. So, {5, }, in

particular, is a slowly varying sequence possessing “good” properties. We use the
way of replacement of sums in (12.3) by integrals

jlog(l—é(u))du, t€[l,+0), (12.4)
0

which doesn’t change the qualitative behavior of distributions. In this way one has
to choose the interpolation 5(¢) for the sequence {5, } . For instance, we may use
the following statement (see Theorem 1, p. 55, [28]).

Lemma 5. There is a slowly varying function &(¢) such that:

(a) 5(n) =6,, nxl;
(b) o(?) is infinite differentiable;

(¢) Lm(8(r)/8(n))=1 forte[nn+1];
t—>+0
(d) &(¢) is monotone, if {5, } is monotone;
(e) 5(¢) islog-downward convex, if {5,} islog-downward convex.

By this operation, which is called a dediscretization, from (12.3) we come to
a “smooth” probability density, defined on [0, +oo) :

()= f(0)~exp{f log(l—é(u))du}, (12.5)
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where f(0) may be obtained from the following equality
00 0 t
[f(tydi=1, or £(0)=([exp[log(1-d(u))dt)".
0 0 0

At the next step we choose various forms of 5(t), for which the integral

(12.4) is possible to evaluate and get closed expressions for it.

Finally, any of many variations of the reverse operation, i.e. discretization
leads to new FDs.

The manner of dediscretization has been introduced and developed in
[22, 52] on example of distributions of moderate growth. The general approach for
FDs of the form (2.3), (2.2) is presented in [53].
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Bw. Uupnjw, k. U. twthbjut, U. 9 Upgnudwiyub

Zwlwwluiught pupunidubpp jruuwhudnpldunhljuynid. qupqugnidp

Utd sarthbipp Yhuuwudn Eynyuyghte hwonppuljutnipjniuubph
dwp bdwinhljuljub niuntdttwuhpnipiniip Junupynid k uyn
hwonppuljwunipnittipnid wnwewgnn — wwwwhnyputph  Jbpnsnipyui
ogunipjudp: Uhuwplp twlhpdws b wyn ptwqujunnid unnwugdus wpnniupubph
puttmpuwip: Pnpnp  hwfwpwlwbughtt  pupumdubph - hwdwp  £odwphwn
Eduyhphy thwuwnbph hhdwt Jpw pttwplynid £ 8w. Uupnjugh b B Fwbhbjjuih
ynnuhg wnwownlus wpuhndwnhlui: dtpohtiu  pugnibmd k
wuhUdywunnunplnpit  hwunwnmb  (quinun  tngnjudnn)  punungphsny
hwdwpujubughtt papudw jutintwynp thnthnpunidp, wyn puppdwt qpubhlhh
Junnigquépp b juyniinipyniit pun yupuwdbnpbph:

Uunngymud £t wpuhndwnhujh Juuwpnudp wypulunhjuynid
oquuuugnpdynny  hwdwhwlwiuyhtt  puwpjunidubph  hwdwp: Nwpuwdbnpulub
hwdwpwjuiughtt pwoumdubph tnp pnwihptbph hwdwp tjwpugpgus tu
upwbg jurmguwb dkpnnubpht Jkpupkpnn wpyniupubp. sidwt b Juudutdw
wpngbuh  unwghntwp  puwppunudubph, hwwnniy  $nililghwibkph, YJuynih
lunnipjnitiniph b wy) Ephnypbbph oquugnpsdwdp: Quuitpydws L pun
wuwpwdbinpbph  juyniimpjut  jbghpp, phpus  Bu wwppkp  qguuwlub
dbnphwbbkph wkpdhttbpny Juynitinipiniip hwuwnwwnnn wpnynitpubp: Spyws
ki hwdwpwlwbughtt  pwojunidubph  wwppbp puwnwbhpubph  Jubntwynp
thnthnjudw yuydwbbp:

A. Acmona, 3. A. lanuenan, C. K. Ap3ymansan.

YacroTHble pacnpeneieHus: B 6uonHdpopmaTuke: pasBuTue

MaremaTtudeckoe H3ydeHHE OHOMOJNEKYISPHBIX —IOCIEI0BATENLHOCTEH
OOJIBIIMX Pa3MEPOB OCYIIECTBISIETCS aHAIM30M CBOMCTB YaCTOTHBIX pacmperne-
JICHWI COOBITUH, BO3HUKAIONINX B TAKUX MOCIEA0BATEILHOCTAX. O030p MOCBSIIECH
00CYXJICHHIO PE3yAbTaTOB B 3TOM oOjactu. Ha ocHOBE OOLIMX 3MIMPUYECKUX
(haxTOB, MONYYSHHBIX AJISI BCEX YAaCTOTHBIX paclpeeneHnii, 00CyKaaeTcs mpenio-
skenHas f. Actonoit u D.A. JlaHuensTHOM aKCHOMAaTHKa.

Akcromaruka MocTyJlIMpyeT NpaBUIbHOE U3MEHEHHE YaCTOTHOIO pacipeie-
JIEHUSI ¢ ACUMIITOTHYECKH IOCTOSHHON MEIJICHHO MEHSIONIEHCS KOMIIOHEHTOMH,
¢dopmy ero rpaduka W yCTOMYMBOCTH MO MapameTpaM. [IpoBepsieTcs BBITIOIHH-
MOCTh aKCMOMATUKH JJIs1 IPUMEHSIEMBbIX Ha MPAKTHKE YaCTOTHBIX pacipelelIeHUN.

OnmcaHbl pe3yapTaThl MOCTPOEHHUS HOBBIX IapaMETPUYECKUX CEMEWCTB
YAaCTOTHBIX paclpesieleHui CIenyoMMI METOAAMM: UCIONb30BAHNE CTAallMOHAp-
HBIX paclpeleNeHnid mpolecca rHOeNid 1 pa3MHOXKEHUS, CIICIUANbHBIX (YHKIIHIA,
YCTONUYMBBIX IUIOTHOCTEN U T.1I.

CdhopmynupoBana 3ajaya yCTOWYMBOCTH IO TMapaMeTrpaM, IPUBENSHBI
pe3yabTaThl YCTAHOBIIEHUS YCTOMYMBOCTH B TEPMHMHAX Pa3IMYHBIX KJIACCHUYECKUX
MeTpuK. s pa3iu4HbIX CEMEHCTB YacTOTHBIX pacHpelesieHUM OaHbl YCIOBHS
MIPaBUIIBHOT'O U3MEHEHMUS.



