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The mathematical investigation of large-scale biomolecular sequences is being 

carried out by analyzing the properties of events arising in such sequences. This 
survey is devoted to discussion of results in this field. Based on general empirical 
facts being fulfilled for all frequency distributions, we discuss the axiomatics 
suggested by  J. Astola and E. Danielyan. 

The axiomatics postulates the regular variation of frequency distribution with 
asymptotically constant slowly varying component, the form of its shape, and the 
stability by parameters. The verification of the axiomatics fulfillment for well-
known frequency distributions is done. 

The paper describes also methods of construction of new parametric families 
of frequency distributions. These methods are: usage of stationary distributions of 
birth-death process, special functions, stable densities, etc.  

The problem of stability by parameters is formulated the results on stability by 
parameters in terms of various classical metrics are given. The conditions of 
regular variation for different families of frequency distributions are formulated. 

Keywords:  frequency distributbiomion, olecular sequence, regular variation, 
convexity, stability by parameters, asymptotic expansion. 

 
1. Introduction. Discovering the evolution by investigating the variety of 

large-scale biomolecular systems there is no other way but to characterize the 
frequency distributions (FDs), say { nP }, of events being important for systems’ 
functioning. The variety and diversity of such systems do not allow to figure out 
and suggest a universal approximation for FD, i.e. suggest a universal model, 
which might be suitable in all possible situations. Based on huge datasets of 
biomolecular systems it has been possible to extract only some common 
information (statistical facts) being applicable almost to all situations for empirical 
FDs. Those are: 

1. { nP } has a skew  to the right, nP >0 for all n, 1nP  . 
The conception of skewness for biologist is based on intuition and on the 

shapes of graphs of empirical FDs. The quantitative aspects of the skweness 
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conception were not even exploited. Only for Power Law and Pareto Law defined 
below  the parameter   was  declared  as  a  measure  of  skewness. 

2. { nP } exhibits Power Law behavior as n   (see [1–6]). 
Random variable (RV) 0  has Power Law, if (P denotes a probability) 

      ( ) ( )nP P n c n      ,  1<  < ,  1n  ,   
1

1n
c n 






   
 
 .    (1.1) 

The Power Law is used for estimation of the connectivity number in 
metabolic networks [2], of the rates of protein synthesis in protein sets of proka-
ryotic organisms  [7], of the number of expressed genes in eukaryotic cells [8, 9], 
of DNA sequencing structures [9],  etc. 

The Power Law is of interest in self-organized growing biomolecular 
networks, because of its scale-invariant property:    1

m nP c P


 sP  for integers 
1n  , 1s  , m n s  . Self-organization means, that if we know local FDs on 

successive  two  fractals, then  we  may extraporate  the  FD  for  all  system [10]. 
3. The log-log plot ( log nP  versus logn ) of most empirical FDs  nP  

systematically deviated from the straight line and show the upward/downward 
convexity [1–6]. 

That is why many new statistical FDs have been proposed. Those are:  
Pareto Law (generalization of Power Law) 

  ,nP c b n b    ,  -1< b <  , 1<  <  , 1n  , 

                                          
1

1
,

n
c b n b 






   
 
  (see [9]);                      (1.2) 

Warring Distribution 

             
1

11 ,
,

n

n
k

p p kP
q q k

   
    

   0< p < q < ,  1,n    0 1 pP
q

  , etc.         (1.3) 

Constructing new FDs the advantage is given to parametric ones, because by 
changing the parameters one hopes to find out the best approximation for unknown 
FD. 

4. The small changes in environment do not have a dramatic influence on the 
structure  of  biomolecular  system. 

We may call this fact the adaptivity or the robustness. 
We may trust or not assumptions of statistical models that lead to different 

empirical FDs for the events occurrence number in biomolecular systems. But, due 
to the probability theory, the replacement of observations’ independence in models 
by various  type of weak dependence cannot  have essential impact on the behavior 
of nP  for  large  n. 

Anyway, statistical models even being important do not describe the 
functional   mechanism  of  biomolecular   systems. 

2. On the Mechanism. The dynamic of the biomolecular large-scale systems 
many authors try to explain with the help of birth-death models with various types 
of intensities. Their stationary solutions generate skewed to the right distributions 
as it  requires  the  empirical   fact 1. 
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In general, the development of any evolutionary large-scale complex biomo-
lecular system is a result of two fundamental phenomena: Darwin natural 
selection, random mutation. The functioning is explained with the help of standard 
birth-death  process [11, 12],  say 
                                                            : 0t t  ,           (2.1) 
which is a homogeneous Markov Process with continuous time and countable 
number of states 0,1,2,... Moreover, conditional probability ( ) ( ( )ijP t P s t    

/ ( ) )j s i   doesn't depend on s, and for 0t   

1( ) ( )ii iP t t o t   , 1 1( ) ( )i i iP t t o t   , 0,1,2,...,i   ( ) ( )ijP t o t , i j >1, 

i >0,  1i  >0. 
Among the numerous publications devoted to birth-death models we like to 

point out a pioneer paper of Yule [13], paper of Simon [14] and some recent ones 
(see, for instance, Granzel and Schubert [15], Bornholdt and Ebel [16], Oluic-
Vicovic [17], Kuznetsov [18], Astola and Danielian [12, 19]). 

The Yule’s birth model is designed to describe the evolution of new species 
within  a genus. Its  stationary solution  has  the  Power Law  as a  limit  case. 

The Kuznetsov’s birth-death model describes the expression process of the 
genes in the eukaryotic cells, which exhibits a strong stochastic component (SSC), 
a chaotic movement (CM) of mutation, and a skewed FD of the number of events. 
In the  model  coefficients of  the  process  are linear. 

The latest one, birth-death model by Astola and Danielian gives a wide 
generalization of previous models. Here the coefficients are non-linear and the 
stationary  solutions  present FDs of  moderate  growth, i.e.  1lim / 1n nn

P P
 . 

The stationary distribution of the process (2.1) exists  iff  

                                                     
1 1

n

k
n k


 
 <              (2.2) 

with  1 / ,n n n    1,n   and takes the form 

                                    0
1

n

n k
k

P P 


  ,       
1

0
1 1

1
n

k
n k

P 


 

   
 

 .          (2.3) 

 1n
  presents  a sequence of  ratios of  ''birth'' and  ''death'' coefficients. 

Let us interpret the process (2.1) as expressed genes process in the 
eukaryotic cells, which exhibits a SSC, a CM. It is a discrete process with many 
protein coding genes in an ''off'' state. The production of the mRNA occurs in 
sporadic pulses with specific mRNA transcripts starts from initiation of the 
transcription of the mRNA molecule of the specific gene at moment zero. Then the 
mRNA molecule exports from nucleus to cytoplasm of the cell where the transcript 
is degrades.  It  leads  to  a  new  mRNA  copies  and  degradation  of  transcripts.  
We  indicate  the  gene  expression  level  by  integers n = 0,1,2,…,  assuming  that  
it is a random process, and denote its distribution at a moment t by 

      nP t P t n  . The process is described as a standard birth-death process 

(2.1) and  t  denotes the random number of mRNA transcripts per a cell in 
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transcripton at a moment t. This mechanism realize the way how molecules are 
chosen to be included into organism over time. It is a mixture of molecular 
sequences being before in organism and new ones, so called mutant new sequences 
from other organisms. In “stable” evolution process the intensities  1n   of “birth” 
and   n  of “death” do not depend on t  and lead to stationary solution (2.2), 
(2.3). The  summarized  intensities  take  the  form 
                                   1 1n na 

   , ,n nb    1n  ,                                   (2.4) 
where a >0, b >0 and ,n


n
  present the intensities of CM and SSC (2.4) at state 

n. Here n
 >0, n

 >0, lim limn nn n
  

 
   . 

3. General Representation. The empirical fact 1 is enough for the following 
conclusion: any FD  nP may be presented in the form (2.2), (2.3) (see [20]). 
Indeed, due  to  fact 1, for 1n   we  have 

1
1

0
0

n
k

n
k k

PP P
P





  . 

Denoting   1/ ,n n nP P   1n  , we come to the first equality in (2.3). The 
last  equality  in  fact 1 leads  to the last equality in (2.3). Now, 0P >0 is equivalent 
to (2.2). 

The reverse statement is also true: any distribution of the type (2.2), (2.3) 
satisfies  empirical  fact 1.  

According to variety and diversity of biomolecular sequences new 
parametric FDs were needed. Kuznetsov suggested three-parametric Kolmogorov-
Warring Distribution [18]. Astola and Danielian built three-parametric Regular 
Hypergeometric Distribution [21], which takes the form 

                   
  

1
1 2

0
0

ˆ ˆ
,

ˆ1

n

n
k

p k p k
P P

k q k





 


   1,n    1 2
0

1 2

ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ( ) ( )
q p q pP
q p p q

 
 

 


 
,         (3.1) 

0< 1 2ˆ ˆp p < q̂ < , 
where    denotes  the  Euler's  Gamma-Function. 

Several variations of three-parametric Regular Pareto type Distribution have 

been  proposed  in [22–24], which  finally acquires  the following  form (
0

1
1

m
 ): 

 
   

 
   

1

1

1
1

1 1

1 1, , 1 , 1,

1 1, , 1 , 0 , 1 ,1 .

n

n
m

n

n m

cP C b c n
n b m b

cC b c c b
n b m b

 

 



 








 

      
    


                       



 

(3.2) 

Easily seen that from (3.1) for 1 2ˆ ˆ ˆ1, , 1,p p p q q    we get the Warring 
Distribution  (see  (1.3)),  and  from  (3.2)  for  c=1  we  obtain  the  Pareto  Law  
(see  (1.2)). 
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Although the FDs (3.1), (3.2) were constructed using other principles than 
the stationary solutions of standard birth-death process, but it is clear that they can 
be presented in the form (2.2), (2.3). Note that for FDs (1.1), (1.2) and (3.2) we 
have to put 0P  equal to normalization factor, and find 0P  from the equality 

1nP  . After this manipulation it is obvious that, for instance,  

  
  

1 2
1

ˆ ˆ
, 0

ˆ1n
p n p n

n
n q n

 
 

 
 

, in case of (3.1), 

 1
1 11 1 , 0,

1n
c n

n b n b



 

              
 in case of (3.2), 

where  n is a sequence of coefficients in general representations (2.2), (2.3) of 
these FDs. 

For 1m   consider m-parametric   n mFD P c , where 1 2( , ,..., )m mc c c c
  

and , 1,ic i m , are parameters. It is convenient to choose parameters to be 
independent, and ranges of their changes be also independent. It means that there 
are  no relationships  among  them  of equality and of inequality types respectively. 

All FDs presented above have independent parameters. But for Warring 
Distribution and Regular Hypergeometric Distribution the independence of ranges 
of parameters’ changes does not take place. The situation is improved by making 
the  linear  transformations of  parameters:  
               1 ,q p p p       and  1 2 1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ1q p p p p p p                     (3.3) 
in the first and in the second cases correspondingly. 

Definition 1. We say that   mnP c


is well-defined, if the coefficients 

1,..., m   of  its general  representation  uniquely define  parameters  1,..., mc c . 
T h eor e m 1  (see [25]).  All  above  presented  FDs  are  well-defined. 
4. Regular Variation. Due to characteristic property ,nP Ln   

   0, , 1L c R n       (see (1.1)), the empirical fact 2 has been interpreted 
in  mathematical  sense  in [19, 22] as a regular variation of FD. 

Definition 2 (see [26, 27]). The sequence  nX  of positive numbers varies 

regularly as n   with exponent  1 ,R    , if for any integer 2s   

                                                    lim( / ) .s n nn
X X s

            (4.1) 

The case 0   presents the slowly varying sequence, which is usually 
denoted by   L n . 

The Definition 2 is equivalent to the representation  , 1nX n L n n   , 
with some arbitrary chosen  0 0L  . 

In general, the sequence   L n  may show quite different behavior as 
n  . 
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L e mma 1  (see [28], p. 6–8). Let 0 L L    . Then, there is a slowly 
varying sequence    L n  such that    lim , lim

nn
L L n L L n


  . 

But, according to the properties of all before known FDs, in [23] the 
following  general  property of  FDs was  suggested. 

Property 1. FD { nP } varies regularly as n   with exponent  ,  
1    , and exhibits an asymptotically constant slowly varying component 
(ACSVC) L, i.e. 
                           ( ) , 1nP L n n n   ,  and  lim ( )

n
L n L R


  .          (4.2) 

For example (see [22, 23]), the following statement holds. 
T h eor e m 2 .  The  FDs (3.1)  and (3.2) satisfy  Property 1 with  

   
     

1 2
1 2

1 2 1 2

ˆ ˆ ˆ ˆ 1ˆ ˆ ˆ1 ,
ˆ ˆ ˆ ˆ ˆ

q p q p
q p p L

p p q p p
 


  
  

     
  

, 

  is  the parameter in (3.2), and 

 
 1

1, , 1
n

cL C b c
n b 



   
  

 . 

In [29] the  following 2m-parametric FD was considered: 

                       

 

0
1 1

1

0
1 11 1

ˆ ˆ ˆ, 1, 0, 0, 1, ,
ˆ

ˆ ˆ ˆ1 , 1.
ˆ

n m
i

n i i
k i i

n m m
i

i i
n ik i i

k pP P n p q i m
k q

k pP q p
k q



 



  

      


         



 
          (4.3) 

T h eor e m 3 .  The FD (4.3) exhibits  the asymptotic expansion 

                                      1 1
1 , ,n

L MP o n
n n n   

      
 

          (4.4) 

where 

                                              
 0

1

ˆ 1
ˆ 1

m
i

i i

q
L P R

p








  

 ,           (4.5) 

 
 

2 2

1
ˆ ˆ

,0
2

m

i i
i

q p
M L




 
   


. 

The FD (4.3) is a generalization of (3.1). Theorem 3, in particular, says that 
 nP of type (4.3) varies regularly as n   with exponent   and exhibits 
ACSVC L (see (4.4), (4.5)), i.e. satisfies Property 1. This is the content of the first 
term at the right-hand-side of expansion (4.4). The second one gives additional 
information on “smoothness” of nP , which agrees with the empirical fact 4. 
Indeed, the “smoothness” of continuous functions comes to light, if they can be 
presented in the form of Tаylor’s Series. The expansion (4.4) is the analog of such 
“smoothness” for a  discrete case. 

The asymptotic expansion (4.4) is natural for all known FDs. That is why we 
may even postulate it as an Extended Property 1 for FDs. 
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Denote by m  the moment of order  nR of FD P  . If  nP varies 
regularly with exponent   , 1    , then m    for 1    and 
m    for 1   (see [26]). If  nP exhibits  ACSVC, then 1m   . The  

Problem of asymptotic behavior of truncated moment   1
1 n

n x
x n P







  as 

x   arises. 
T h eor e m 4  (see [22, 30]). Let FD nP satisfies Property 1. Then, 

                                    1( ) ( ln )(1 (1)),x L x o x       .                       (4.6) 
For concrete FDs even more terms of asymptotic (4.6) can be obtained. 
For instance, for FD (1.3) (see [30] and [22], p. 140–145): if 1q p   and 

p is an integer, then  1 2
1 1( ) ln ( ( )) 2 ( ) ,x p x C A p x O x x         , where 

  1
1

1
1 ;

p

n
A p n


   if 2q p   and p is an integer, then 

2
2 2

2 1( ) 2 ( 1) ln ( ( )) ( ) ,
2
px p p x C A p O x x

x
          

 
, 

where    
1

2
1

3 4
2 1

p

n

pA p n
p






 


 . Everywhere C denotes the Euler’s constant. 

5. Convexity and Monotonicity. For a sequence  nX of positive numbers 
we consider the following two types of convexity:  for n=0,1,2,… 

1)  2 12 0n n nX X X         upward (downward) convexity, 
2)     1 1 2/ /n n n nX X X X      log-upward (log-downward) convexity. 
The Problem of comparison  of these  convexities  arises. 
L e mma 2  (see [24, 31]). The upward (log-downward) convexity of 

 nX implies  its  log-upward (downward) convexity. 
For  nX  the existence of a pair “upward and log-downward convexity” 

contradicts Lemma 2. But the pair “downward and log-upward convexity” may 
exist (see [12], p. 60–61). 

Let  nX  and  nY  be positive sequences. Obviously, if  nX and  nY are 
log-upward (log-downward) convex, then  n nX Y is of  the same type. 

What can we say about  n nX Y ? It turns out that, for instance, the 
following  statement  holds. 

L e mma 3  (see [31]). Let  nt ={ / }, 1n nY X n  , be downward convex. If 

 n nX Y decreases and is log-downward convex, then  n nX Y is of the same 
type. 

Lemma 2 is of interest in the way of constructing FDs with given properties, 
because of the following statement. Let (1, ), , 1L R s      be an integer, 

1
1 2\{0}, 1, , 0 ...i sM R i s         , are given. 
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Corollary 1. The sequence 
1 i

s
i

i

ML
n n  



  
 

  decreases  and  is log-downward 

convex  starting  from  some  index 0 1n  .  
With the help of this statement the following general result is proved. 
T h eor e m 5   (see [31]). There is a decreasing and log-downward convex 

 nFD P  satisfying asymptotic expansion with above a priori given constants 

                                     
1

1 ,
i s

s
i

n
i

MLP o n
n n n     



      
 

           (5.1) 

(compare to (4.4)). 
Using the method developed in [31], it is possible to build FD of type (5.1) 

with any finite number of log-upward/log-downward convex pieces in its graph, 
the  last of which decreases  and  is log-downward  convex. 

Very often it is easier to prove such kinds of statement using continuous 
analogs (CA) of the sequence  nX of positive numbers. We say that the function  
f(t) defined on  0,  is a CA of  nX , if f is continuous on  0, , and 

  , 0nf n X n  . The “smoothness” of f allows to apply methods of Mathematical 
Analysis. 

The linear CA (LCA) of  nX  sometimes is more preferable for other 
purposes among all other continuous ones. The shape of its graph is formed by 
possibly  minimal  number of convex  pieces. 

Definition 3  [22]. We say that  f t  defined on  0,  is the LCA of 

 nX , if:        , 0;na f n X n b f t   is continuous on  0, ;    c f t  is 
linear on each  , 1 , 0.n n n   

It can be easily  proved that  nX  and its LCA are unimodal (or not) with 
the same mode simultaneously, and have the same intervals of monotonicity  and 
convexity. 

Now let  us discuss the properties of monotonicity and convexity  of known 
FDs. The  famous ones (see (1.2), (1.3)) are decreasing and  log-downward convex. 

For FDs (3.1), (3.2) constructed at the second stage of development we 
combine  the  results  from [23]  and [24] in  the  following  statement. 

T h eor e m 6 .   FDs (3.1), (3.2) are unimodal. Their graphs are formed by 
no  more  than  two monotone, and no more than three log-convex (convex) pieces. 

6. Around Empirical Fact 3. Due  to substantiated  Property 1 (see (4.2)), 

                                       loglog
log log

n L nP
n n

    for n=1,2,…,          (6.1) 

where in case of Power Law    L n c   doesn’t depend on n (as a rule, the 
biologists deal with the log-log plot of  nP ). According to empirical fact 3 one 
may conclude that the upward (downward) convexity of  log / lognP n  is only the 

result of piecewise convexity of   log L n , where, obviously, the last piece is 

downward convex. Note that   lim log / log 0
n

L n n


 , which follows from the 
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following  property of   L n : for any  0,1   and  n large enough the inequality 

 n L n n     holds. Now, writing (6.1) in the form  log lognP n     

 log L n  we conclude that  log nP  is piecewise convex, and may affect on the 
type of convexity of  nP  only in initial finite interval. But in finite interval the 
number of log-convex (convex) pieces for  nP  cannot be more than finite. So, this 
number on  0,  is finite too. Next argument: any biomolecular system comes to a 
structure with minimal “energy expenditure”, which affects on FDs. The situation, 
when  nP has more than one log-convex (convex) piece under “slow mutation” 
leads to unnecessary “energy expenditure”. (The famous FDs (1.1), (1.2), (1.3) have 
exactly one log-downward (downward) convex piece). But building the mathema-
tical theory of FDs in bioinformatics with arbitrary  speed of  “mutation”  one  has  to  
allow  for  FDs  to  have  more  than one (at least two or three) log-convex (convex) 
pieces. Such a situation may be explained with the help of evolution process’ 
functioning. Indeed, the value 1n n  

    (see (2.4)) as  n   creates nonlinear 

deterministic “shift” over time n in new transcripts. If  1 / 1n n  
   over time n, 

then the SSC manages the situation. The deterministic “shift” of SSC leads to the 
log-downward (downward) convexity of  nP . The CM doesn’t take part in stabili-

zation process. If * *
1 / 1n n    for “large” massif of n, then the condition  / 1a b   

(see (2.4)) stabilizes the process. The CM gets possibility to make observed affect on 
the process. It’s maximal influence can be easily seen on the initial massif on indices, 
around the mode (now intensities of SSC and CM are comparable). Just around the 
mode  log-upward (upward) small  convex  piece  of   nP  appears. 

Above  said  and Theorems 5, 6 we  propose  for  the  following  
Property 2. FD nP is unimodal and it’s graph is formed by no more than three 

log-convex (convex) pieces, the last of which is log-downward (downward) convex. 
The Property 2 with convex (log-convex) pieces has been suggested in [23] 

(in [24]). For  the  FD (4.3) the  following  statement  takes  place [24]. 
T h eor e m 7 .  Let for vectors  1ˆ ˆ,..., mp p  and  1̂ ˆ,..., mq q  in (4.3) the 

numbers ( ) ( )ˆ ˆand , 1,i ip q i m , present the i-th order statistics respectively. Then 
the  conditions. 
                                                         1 1ˆ ˆ ˆ ˆ,..., m mp q p q                         (6.2) 

are  sufficient for  nP  of type (4.3) to be decreasing and log-downward convexity. 
The following Problem stays unsolved: find necessary and sufficient condi-

tions for the fulfillment of Property 2 with one, two, three log-convex pieces for 
FD (4.3).  

Let  n  be increasing sequence of positive numbers with lim nn



  , 

 1lim / 1.n nn
 

  Then the sequence  n , where  1 / ,n n b    0,   

0,b   1n  ,  possesses  the same  properties. 
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A deep investigation on the stationary distribution (2.2)–(2.3) with 
* *

1 1, , 1n n n n n       , and with 1 , , 1n n n n n    
    , in (2.4) has 

been  done  in [12, 19, 32]. The  following  FD was  extracted 
0

1
1 :

m

  
 
  

             
1

1 1

0 0
11 1

1 1 11 , 1, 1 1
n n

n
nm mn m n m

c c cP P n P c
   


 

 

     
              

           (6.3) 

with  either  1 10 1, , or 0 ,n nc c            . 
T h eor e m 8 .  Let  0 1, n  increases, lim ( / ) 0nn

n 


 . Then: 

1.  nP varies  regularly with exponent   , iff  n varies regularly with 
exponent  . 

2. If  1 ,   then 1
n    . 

3.  nP and  n exhibits ACSVCs  L and L1 simultaneously. Moreover, 

 0 11 / .L P c L    
The statements 1 and 2 in Theorem 8 are established in [12], the statement 3 

is  proved  below. 
Put  1 1 1 0 0 0 0, 0 .n n na P n a P P        Then, due to (6.3), 

   
1

1 0
1

1 ... 1
n

n n n k
k

a a c P P c c P





        . So, we obtain  the reverse equalities 

                                           
1

0
1

1 / , 1.
n

n k n
k

P c c P P n




     
 

           (6.4) 

Since,    1 ,n nn L n P n L n    , therefore, from (6.4) we obtain  

     
1

0 1
1

1 / , 1
n

k
k

L n P c c P L n n




     
 

 . Letting n   we prove the statement 3. 

T h eor e m 9  (see [12], p. 54–55,67–68). Let the conditions of Theorem 8 
hold, and  n varies regularly with exponent  1,  . If   n  is downward 

and log-upward convex, then  nP decreases and is log-downward convex.  
According to Theorems 8, 9 under the conditions of Theorem 9 the FD (6.3) 

satisfies Properties 1 and 2.   
7. Back to General Representation. Below let the sequence n of positive 

numbers be the sequence of coefficients in  general  representation (2.2), (2.3) of 
FD  nP . So,  1/ , 1n n nP P n   . It  follows that: (a) for a given  n we have ( )1n   , 
iff   1n nP P   ; (b)  n  increases (decreases), iff  kP is log-downward (log-

upward) convex. Thus, one  may  reformulate  the  Property 2 in  terms  of  n . 
Property 2*.  n is formed by no more than three monotone pieces, where 

the  last  one  increases and  is  located  under  the straight  line  y=1. 
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Now assume that the Property 2* holds for the FD  kP . We are going to 
study the question of task on convergence of series (see (2.2)), i.e. 

                                                         
1 1

n

k
n k


 

             (7.1) 

for FDs of moderate growth, which means that  1lim / 1.n nn
P P 

 In terms of  n  

it is equivalent to the existence of limit 
                                                         lim 1nn




 .                        (7.2) 

Any regularly varying FD nP , due to Property 1, is a FD of moderate 
growth. 

To obtain a sufficient condition for the validity of (7.1) one can use the 
Kummer’s Test (see 3.37, p. 116–117 [33]). Namely, let nD  be a sequence of 
positive numbers such that the positive limit (finite or infinite) exists 

 1
1lim n n nn

D D 


 . Then  (7.1)  holds. 

Due to (7.2), one may replace the last limit by the following one 
                                                       1lim 0n n nn

D D
  .                       (7.3) 

It can be easily seen that (7.3) holds, if 
11 , , , (0,1)n o n R

n n 
          

 
 (we take nD n ),      (7.4) 

11 , ,1n o n
n n
          

 
  (we take nD n ).         (7.5) 

This test was used in [34] in order to prove (7.1) for 

  
1

1 1 11 .... 1 1 ,     
... ... ... ...n

K K

ρε o n
n nlnn nlnn lnln lnn nlnn lnln lnn



        
 

, 

where 0K  is a natural number and  1, .    
All considered cases of  n ’s asymptotic behavior  are examples of FD 

 kP of moderate growth.  Now  let’s discuss the Property 1. 
T h eor e m 10   (see [20]).  
1) The condition (7.5) implies the regular variation of  kP  with exponent 

(  ). 
2) Under the condition (7.5) the existence of ACSVC for  kP  is equivalent 

to  the  limit  relation 

                                                  lim 1 0kn k n k


 

    
 

 .           (7.6) 

Let  the following asymptotic expansion with 1 ,1
2

   
 

 holds  for   :nP  

                   1 1
1

1 ,    ,  , 0 ,n ρ ρ α ρ+
L MP o n L R     M R \
n n n

        
 

           (7.7) 
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which in particular implies that  nP  varies regularly at infinity with exponent 
(  ) and exhibits ACSVC L, i.e. the Property 1 takes place. We easily verify that 

 
   

1ρ

1

111
1 1

1 1 1 11 1 1 1 , ,

α

n α

α α

Rn o n
ε

n R n o n

ρ R R ρo o o o n
n n n n n nn n

 

 

      
    

                                         

 

where  /R M L . Various forms of  kP ’s asymptotic expansions, similar to 
(7.7), may lead to the form (7.4) for  n , which allows us to formulate the reverse 
to  statement (1) in  Theorem 10. 

In particular, let’s replace the Property 1 by more strong but also natural 
Improved Property 1.  For FD  kP  the asymptotic expansion (4.4) holds. 
The Improved Property 1 implies the asymptotic expansion (7.5). Note that 

for all presented above FDs the Improved Property 1 takes place. 
Several  relationships  between  kP ’s and  n ’s asymptotic expansions 

are  obtained  in [31, 35]. 
For investigation of the properties of FDs  kP it is natural to formulate them 

in  terms of  n . 
Property 1*.  n satisfies  asymptotic expansion (7.5). 
8. Continuity by Parameters. The simplest form of empirical fact 4 with 

respect to parameters of FDs in mathematical sense is the continuity of  nP  by 
parameters. Sometimes FDs are given in the form of their Generating Functions 
(GFs). 

Let us consider the finite-parametric FD   n mP c . The parameters are 

1,..., mc c  and  1,...,m mc = c c . The GF of FD   mnP c


 is defined as follows: for 

any  0,1x  

                                                      
0

, n
m mn

n
P x c P c x


 

 
.           (8.1) 

Having GF (8.1), it is possible to establish the continuity of   n mP c  by 
parameters  1,..., mc c   with the help of Continuity Theorem for GF (see XI.6,          
p. 262 [36]). 

Continuity Theorem. Let   k
nP  be a sequence of FDs. Then, in order 

( )k
n nP P  as n   for fixed n it is necessary and sufficient the following 

convergence: 
     

0 0
ask n n

k n n
n n

P x = P x P x = P x     k +
 

     for any  0,1x . 

This idea has been developed in [22], p. 33–36, for famous FDs. For 
instance, in case of FD (1.3) with the help of hypergeometric series (see 9.100, 
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p.1040, [37]) and its integral  representation (see 9.111, p. 1040, [37]) we have for 
GF of (1.3): 

                                              
1

1

0
1 1q- pP x, p,q = q - p - t - tx dt

 .           (8.2) 

Due to Continuity Theorem, if ,   p p' q q'  , then the GF (8.2) with 
parameters p  and q tends to GF (8.2) with parameters p'  and q' ,  if it is possible 
to  pass  to the limit  under  the sign of  integral, which  is the case in  this situation.  

In some cases the integral in (8.2) may be evaluated in a closed form. Due to 
9.121.24, p. 1041 [37], for 1/ 2, 1p q   one  may  obtain 

 1 1, ,1 0,1
2 1 1

P x = ,    x
+ x

     
 (see  also [38]). 

9. Stability by Parameters. Let   n mP c  be m-parametric FD with 

.m
mc R 
  In general, the stability property by parameters is formulated as follows: 

        n mP c   is  stable with  respect  to parameters 1,..., mc c  
                                   in  terms of  some classical  metric, say  .          (9.1) 

Here  explanations  are  needed.  All  non-trivial  metrics  in  Rm  are equi-

valent to the following one ' '

1

m

k k m m
k

c c c c


     , where  1,..., ,m mc c c  
  

 ' ' '
1,...,m mc c c  

 . In the set of sequences   n mP c  with different collections of 

parameters mc  one has to introduce some classical metric       ',n m n mP c P c    

“suitable” to   n mP c . For simplicity we write  ',m mc c    instead of 

      ',n m n mP c P c   . Below K  is a convex  compact in  . 

Definition 4. We say that FD   n mP c  is  -stable with respect to 1,..., mc c ,  
if  for  any K     
                                                   '

'

| | 0
 lim , 0

m m
m mc c

ρ c c
 

 
              (9.2) 

uniformly on  ,mc  '
mc K
 .  

Then, the empirical fact 4 for finite-parametric FD with respect to 
parameters  takes  the  mathematical  form (9.2). 

The form of K may be chosen simple, if parameters and ranges of their 
changes are independent. Parameters (ranges of their changes) are independent, if 
there are  no relations  of equality  type (of inequality type) among  them. 

All presented above FDs have independent parameters. But for FDs (1.3) 
and (3.1) the independence of parameters’ changes ranges doesn’t take place. The 
situation  can be  improved with  the  help of  linear  transformations: 

   1 2 1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ1 ,   for FD 1.3 ;  1 ,  ,    for FD 3.1ρ q p p p ρ q p p p p p p          . 

Now, for the FD   n mP c  with independent parameters and independent 
ranges  of  their  changes  one may choose K  in  the form  
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1

,
m

i
i

i
K c c



    ,            (9.3) 

where  1,..., mc c  ,   1,..., mc c    ,  i ic c  for 1,i m . 

The following metrics for   n mP c in bioinformatics are usually used [12], [22]: 

        

       

' '

0 0

' '

0

, sup , Uniform Metric

,          Metric in Variation .

n

m m k m m
n k

m m n m n m
n

c c P c c

ε c c P c P c


 



 

 





   

   
kP

 

The last one is the particular case with p=1 of lp-metrics, and, obviously, 

   ' ', ,m m m mc c ε c c 
    . Thus, if   n mP c  is ε -stable, then  it  is  -stable  too. 

Generally speaking, the reverse statement to the last one is not true. But for 
the FD (6.3) under the conditions of Theorem 8 it can be proved that 
   , ' 1/ 2 , 'δ c c ε c c  (see [12], Chapter 4). 

The stability problems for introduced FDs in terms of ε- and  -metrics are 
in the center of attention of several publications [39–43]. 

It is of interest the following Stability Criterion for   n mP c  in terms of     
lp-metrics (see [22, 43]). We assume the following conditions hold: 

1. The FD   n mP c  allows a representation in the form 

        / ,  0,  0.n m n m m n mP c g c g c g c n  
     

2. There is mc K 
 such that for all 0n  we have    max

m
n m n mc K

g c g c


 
  . 

3. There is mc K
 such that  min

m
m mc K

c g c 
 

  . 

4. The FD   n mP c  satisfies Property 1. 

Let  mρ ρ c  
  be the exponent of   n mP c ’s regular variation and 

  1/ ρ mp > c 
 . 

T h eor e m 1 1 .    n mP c  is lp-stable on K, iff 

   
'

'

0
lim 0

m m
n m n m

c c
g c g c

 
  

   uniformly on mc , '
mc K
  for every 0n  . 

Theorem 11 was applied to FDs (3.1) and (3.2) in order to prove for them the 
lp-stability  by  parameters. 

Another approach to stability of finite-parametric FDs has been suggested in 
[44]. It is based on monotonicity property of functions in case, when FD may be 
presented in the form of such functions combined by finite number of operations of 
finite  or infinite  sums, product,  ratio, convolution. 

10. Semi-Group Property.  We already mentioned that the Power Law (1.1) 
is of interest in self-organized growing biomolecular networks, because of its 
scale-invariant property. Trying to figure out other FDs for application here one 
has to analyze the properties of such networks. Together with the self-organization 
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there is the second peculiarity. The FD must be of the same type in united interval 
as it is in each fractal forming the interval in order to extrapolate the FD in united 
interval and in whole system. The fractals may be chosen with approximately equal 
lengths in the way, which allows to postulate either the independence or some type 
of “weak” dependence between the numbers of event’s occurrences on each fractal. 
These random numbers are characterized by local FDs on fractals. Now, instead of 
scale-invariance the semi-group property has to take place. In contradiction to 
scale-invariance property, where the operation of multiplication is used, the semi-
group property implies that the convolution of FDs of the same type equals to FD 
of exactly this type. Such semi-group property is intrinsic for normal, Cauchy’s, 
Levy’s distribution functions and for many other very useful ones. The semi-group 
property holds, for instance, for the four-parametric family of Stable Laws (see 
[45, 46]). Moreover, the conception of regular variation and the semi-group pro-
perty for empirical FDs` continuous analogs are closely connected and supplement 
each other from the point of view of Probability Theory. It is just the time to notice 
that  Stable Laws  not  only satisfy  semi-group property, but  also  Property 1. 

Below we introduce more powerful than the semi-group property, and, 
obviously, more  restrictable  property, which  extracts the  family of  Stable Laws. 

Definition 5. We say that distribution function S is stable, if for any 1,ia R  
, 1,2ib R i  , there  are numbers 1,a R  b R    such that 

11 2

1 2

x a x a x aS S = S ,   x R
b b b

            
    

, 

where * denotes  the sing of  convolution. 
Let us describe the parameters of Stable Laws. The first essential parameter 

 0,2  is the exponent, which defines the exponent  ρ  of Stable Law 
density’s  regular  variation 1ρ α  . 

Excluding Normal Law 2  any Stable Law  0,2  has infinite 
variance. 

Denoting by αS  the Stable Law with exponent  0,2  consider its two 

tails:  S x   (left tail) and  1 S x  (right tail) for x R . The second essential 
parameter  for  S is  asymmetry, i.e. the value  of  limit 

   
     1

lim 1,1
1x

S x S x
S x S x
 

 




  
  

  
 

(the ratio of the tails difference and sum), which always exist. In other words, the 
asymmetry is nothing else, but the measure of skewness for  αS x . Due to 
empirical fact 1, we are interested in Stable Laws with maximal skewness to the 
right, i.e. in  S x  with 1   . 

The remained two parameters (shifting parameter and scale factor) are non-
essential. 

The next condition, which has to be fulfilled, if we want to use Stable Laws 
in bioinformatics, consists in following. The extracted densities of Stable Laws, 
which assumed to be continuous analogs of FDs, must be concentrated in  0, . 
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Denote by  ; ,S x    a stable density with exponent   and asymmetry  . 
For our purposes we may use not only  ; , , 0 1S x      (only in this 

case  ; ,1S x   is concentrated on  0, ), but also  2 ; ,0 , 0 2,S x      for 

 0,x  . 

The density  ; ,0S x   for 1x R  is symmetric, so,  2 ; ,0S x   for 

 0,x   is  concentrated  on  0,x   and  has skewness  to  the right. 
Now, the  following families  of  two-parametric densities 

                       
    
    

1/ 1/
,

1/ 1/
,

ˆ ; ,1 , 0 1 ,

2 ; ,0 , 0 2

f x S x  , R

f x S x  , R

 
 

 
 

    

    

  

  

     


    

            (10.1) 

are  condidates  to be continuous  analogs of  FDs (see [22]). 
Finally, note that the densities (10.1) are formed by no more than three 

convex  pieces and  are  unimodal (see Property 2). 
11. Disc retization of Densities. Besides the way of new FDs construction 

based on standard birth-death process with various forms of intensities, there is a 
couple of other known ways. The first one consists on construction based on dis-
cretization of densities, which are concentrated on  0,  and satisfy Properties 1 
and 2. We already  have such an example: two-parametric  Stable Densities (10.1). 

Let    , 0,f t t  , be a continuous density satisfying  Properties 1 and 2. 
Definition 6 (see [22]). We say that FD  nP  of the type 

                                                    
1

( ) , 0,
n

n
n

P f t dt n


                            (11.1) 

is the discretization of  f. 
It is very important that the discretization conserves the properties of 

monotonicity,  convexity,  unimodality of the density ( )f t , i.e. at least the 
Properties 1 and 2 hold. It remains only  to verify the Property 3. 

T h eor e m 1 2  (see [41]). The discretizations of type (11.1) of densities 
(10.1) are stable with respect to parameters   and   in terms of Metric in 
Variation. 

A slightly different form of discretization of Stable Densities was used in 
publications [48–50]. 

                                                      

0

( ) , 0,
( )n

K

f nP n
f K



 


               (11.2) 

where ( )f t  presents  the corresponding  Stable Density. 
Unfortunately, the closed form of Stable Densities is possible to obtain only 

for normal, Cauchy and Levy Laws. For others there are only representations in the 
form of convergent series [45, 46]. That is why above introduced types of discre-
tizations for Stable Densities lead to complex expressions. At the same time, the 
Laplace Transform of Stable Density with asymmetry 1,   due to Theorem 3.1, 
p. 43 [46], always  exists 
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                   
 

exp  for 0 2, 1, ,

exp log  for 1, .

α
sx

α α

s α s R
ρ s e dS x

s s s α s R

 





       
   

        (11.3) 

Here only one representative with given parameters of shifting and scaling 
are taken. Also for any Stable Density the right-side Laplace Transform has a 
closed form. We may demonstrate how it is possible to build FDs with the help of 
Laplace  Transform.  Let 

                                                   
0

, 0,sxs e f x dx  s


                (11.4) 

be the Laplace Transform of continuous on  0,  density   > 0f x , which is 
concentrated on  0, . It is easy to prove the following  statement. 

L e mma 4 .  The function  1 , 0 1z  z    , presents the GF of some FD. 
Note that Lemma 4 is true, even if the lower limit in integral (11.4) equals to 

some number  , where R  , and ( ) 0f x   is concentrated on  ,  . 
Due to Lemma 4, one may suggest a new type of discretization, in particular, 

based  on Laplace  Transform  of Stable Densities (see (11.3) too). 
From 1960s, after the appearance of a series of papers by Mandelbrot and his 

successors, who sketched the use of Stable Laws in Economics and Biology, it 
comes out that Stable Laws have to be attached to Special Functions of 
Mathematical Analysis. Several Special Functions are connected with Stable 
Densities [51]. For instance, let 

0
( ) ,

( 1)

n

n

XE X R
Г n 





 


 ,  (see [45])  

be the Mittag-Leffler function, where  Г   denotes the Euler’s Gamma-Function. 
Then (see, for instance, [46], p. 169) 

1 1/ 1/

0
( ) ( ; ,1) ,  0sx α α

ααE s e X S X α dX s


     . 

12. Method of Special Functions. The way of FDs construction based on 
different forms of discretizations of either Stable Densities, or their Laplace 
Transforms  may  be referred  as a variation  of  Method of  Special  Functions. 

There are other ideas, whose realizations can be interpreted as variations of 
Method of Special Functions. For instance, we search various Special Functions of 
Mathematical Analysis, which have representations in the form of positive conver-
gent series and also Integral Representations. Then, forming the ratios of the n-th 
term and the sum we construct the probability nP  for the FD nP . In this way the 
Warring, Hypergeometric, Pareto FDs and many other useful ones may be obtai-
ned. Let  us  illustrate  this way on simple  example of Warring  Distribution (1.3). 

Consider the hypergeometric series (see 9.100, p. 1039, [37]), which is a 
Special  Function: 

                                          
   0

, , , 1
1

nn n

n n

F z z
n

 
  


 


                (12.1) 
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for  positive values of arguments, where   ( 1) ( ),  0nx x x x n n .     The series 
(12.1) is convergent in  the  following cases (see 9.102, p. 1040, [37 ]): 

( ) 0 1;  ( ) 1 ,   - 0;  ( ) z = 1;  - 1a z b z α β γ c α β γ         . 
The following integral representation holds for 0    (see 9.111, p.1040, [37]): 

                           
1

1 1

0

1, , , (1 ) (1 ) ,
,

β γ β αF α β γ z t t tz dt
B β γ β

     
         (12.2) 

where ( , )B x y  denotes  the  Beta  Function. 

nP , 1n  , of  the form (1.3) means that, due to
0

1n
n

P


 , we have 

1
1 1 1

0 0
0

1( ) ( ,1, 1,1) (1 ) (1 ) , i.e. 1 ( / ),
(1, )

q p pP F p q t dt   P p q
B q q

            where  

(12.1) and (12.2) were used. In our case the conditions (b) and     hold. 
One more way for FDs construction, which may be characterized as an 

addition to Method of Special Functions, consists in following. Let the FD  nP  
satisfies the general representation (2.3), (2.2) and Properties 1 and 2. We present 
(2.3) in the form 

                                 0
1

exp log(1 ) ,   1 ,  1
n

n n n n
k

P P δ δ ε n


      
 
 ,       (12.3) 

where, due to Properties 1, 2 and their various improvements in terms of  n , we 
have  lim 1,n nn

   


 is monotone starting from some index n0, etc. So,  n , in 

particular, is a slowly varying sequence possessing “good” properties. We use the 
way of  replacement of sums in (12.3) by  integrals 

                                               
0
log(1 ( )) ,  1,

t
δ u du t   ,            (12.4) 

which doesn’t change the qualitative behavior of distributions. In this way one has 
to choose the interpolation  t  for the sequence n . For instance, we may use 
the following statement (see Theorem 1, p. 55, [28]). 

L e mma 5 .  There is a slowly varying function  t  such that: 

(a)    , 1;nn    n        
(b)  is  infinite  differentiable;(t)    
(c)   lim ( ( ) / ( )) 1 for 1 ;

t
t n     t n,n 


    

(d)     is monotone, if  is monotone;nt      
(e)     is log - downward convex, if is log - downward convex.nt       
By this operation, which is called a dediscretization, from (12.3) we come to 

a “smooth” probability density, defined on  0, : 

                                      
0

( ) (0) exp log(1 ( ))
t

f t f δ u du
 

   
 
 ,        (12.5) 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2010, № 3, p. 3–22. 
  

21

where (0)f  may  be  obtained  from  the  following  equality 

 
t

1

0 0
( ) 1, or 0 ( exp log(1 ( )) ) .

0
f t dt    f δ u dt

 
      

At the next step we choose various forms of  t , for which the integral 
(12.4) is  possible  to evaluate  and  get  closed  expressions  for  it. 

Finally, any of many variations of the reverse operation, i.e. discretization 
leads  to new  FDs. 

The  manner of dediscretization  has been introduced  and  developed  in  
[22, 52] on example of distributions of moderate growth. The general approach for 
FDs  of  the form (2.3), (2.2)  is  presented   in [53]. 
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Յա. Ասթոլա, Է. Ա. Դանիելյան, Ս.  Կ. Արզումանյան 
 

Հաճախականային բաշխումները կենսաինֆորմատիկայում. զարգացումը 
 

Մեծ չափերի կենսամոլեկուլային հաջորդականությունների 
մաթեմատիկական ուսումնասիրությունը կատարվում է այդ 
հաջորդականություններում առաջացող պատահույթների վերլուծության 
օգնությամբ: Ակնարկը նվիրված է այդ բնագավառում ստացված արդյունքների 
քննարկմանը: Բոլոր հաճախականային բաշխումների համար ճշմարիտ 
էմպիրիկ փաստերի հիման վրա քննարկվում է Յա. Ասթոլայի և Է. Դանիելյանի 
կողմից առաջարկված աքսիոմատիկան: Վերջինս ընդունում է 
ասիմպտոտիկորեն հաստատուն (դանդաղ փոփոխվող) բաղադրիչով 
հաճախականային բաշխման կանոնավոր փոփոխումը, այդ բաշխման գրաֆիկի 
կառուցվածքը և կայունությունն ըստ պարամետրերի: 

Ստուգվում է աքսիոմատիկայի կատարումը պրակտիկայում 
օգտագործվող հաճախականային բաշխումների համար: Պարամետրական 
հաճախականային բաշխումների նոր ընտանիքների համար նկարագրված են 
նրանց կառուցման մեթոդներին վերաբերող արդյունքներ. ծնման և վախճանման 
պրոցեսի ստացիոնար բաշխումների, հատուկ ֆունկցիաների, կայուն 
խտությունների և այլ երևույթների օգտագործմամբ: Ձևակերպված է ըստ 
պարամետրերի կայունության խնդիրը, բերված են տարբեր դասական 
մետրիկաների տերմիններով կայունությունը հաստատող արդյունքներ: Տրված 
են հաճախականային բաշխումների տարբեր ընտանիքների կանոնավոր 
փոփոխման պայմաններ: 
 

Я. Астола,  Э. А. Даниелян,  С. К. Арзуманян. 
 

Частотные распределения в биоинформатике: развитие 
 
Математическое изучение биомолекулярных последовательностей 

больших размеров осуществляется анализом свойств частотных распреде-
лений событий, возникающих в таких последовательностях. Обзор посвящен  
обсуждению результатов в этой области. На основе общих эмпирических 
фактов, полученных для всех частотных распределений, обсуждается предло-
женная Я. Астолой и Э.А. Даниеляном аксиоматика.  

Аксиоматика постулирует правильное изменение частотного распреде-
ления с асимптотически постоянной медленно меняющейся компонентой, 
форму его графика и устойчивость по параметрам. Проверяется выполни-
мость аксиоматики для применяемых на практике частотных распределений. 

Описаны результаты построения новых параметрических семейств 
частотных распределений следующими методами: использование стационар-
ных распределений процесса гибели и размножения, специальных функций, 
устойчивых плотностей и т.д. 

Сформулирована задача устойчивости по параметрам, приведены 
результаты установления устойчивости в терминах различных классических 
метрик. Для различных семейств частотных распределений даны условия 
правильного изменения. 


