Physical and Mathematical Sciences

2010, № 3, p. 23–28

Mathematics

ON ONE URYSOHN TYPE NONLINEAR INTEGRAL EQUATION WITH NONCOMPACT OPERATOR

Kh. A. Khachatryan*

Institute of Mathematics of NAS Armenia

In the present paper the Urysohn type nonlinear integral equation with noncompact operator on the half-line is considered. It is assumed that the Wiener–Hopf–Hankel type operator is a local minorant for the initial Urysohn operator. The existence of a positive and bounded solution is proved. The limit of constructed solution at infinity is calculated. At the end of the work a list of examples is given.

Keywords: nonlinearity, iterative methods, Urysohn operator, Caratheodory condition

§ 1. Introduction and Formulation of Theorem. In the present work the following nonlinear integral equation

$$f(x) = \int_{0}^{\infty} K(x, t, f(t)) dt, \quad x \in \mathbb{R}^{+} = (0, +\infty), \quad (1)$$

is considered. Here f(x) is an unknown real measurable function, satisfying equation (1) almost everywhere, $K(x,t,\tau)$ is defined on $R^+ \times R^+ \times R$ and satisfies the following conditions: there exists a number $\eta > 0$, such that

- a) $K(x,t,\tau) \ge 0$, $(x,t,\tau) \in R^+ \times R^+ \times [0,\eta] = \Omega_\eta$.
- b) $K \uparrow$ in τ on interval $[0,\eta]$ for each fixed $(x,t) \in R^+ \times R^+$.
- c) $K(x,t,\tau) \in Carat(\Omega_{\eta})$, i.e. function $K(x,t,\tau)$ satisfies the Caratheodory condition in τ on Ω_{η} . The latter means that for each fixed $\tau \in [0,\eta]$ the function $K(x,t,\tau)$ is measurable in $(x,t) \in R^+ \times R^+$ and for almost all $(x,t) \in R^+ \times R^+$ the function $K(x,t,\tau)$ is continuous in τ on the interval $[0,\eta]$ (concerning this condition we refer to [1]).

d)
$$\int_{0}^{\infty} K(x,t,\eta)dt \le \eta, \quad x \in \mathbb{R}^{+}.$$
 (2)

Let $K_0(x)$ and $K^*(x)$ are given measurable functions on sets R and R^+ respectively, satisfying

_

^{*} E-mail: Khach82@rambler.ru

•
$$0 \le K_0 \in L_1(R), K_0(-x) > K_0(x), x \in R^+,$$
 (3)

•
$$\int_{-\infty}^{+\infty} K_0(\tau) d\tau = 1, \quad \nu(K_0) \equiv \text{v.p.} \int_{-\infty}^{+\infty} \tau K_0(\tau) d\tau > -\infty,$$
(4)

•
$$0 \le K^*(x) < K_0(x), x \in R^+, K^*(x) \downarrow \text{ in } x \text{ on } R^+,$$
 (5)

$$\bullet \quad m_2 = \int\limits_0^{+\infty} x^2 K^*(x) dx < +\infty. \tag{6}$$

We assume that

e)
$$K(x,t,\tau) \ge \lambda(x)(K_0(x-t) - K^*(x+t))\tau$$
, $(x,t,\tau) \in \Omega_n$, (7)

where $\lambda(x)$ is a measurable function on R^+ , and besides

$$0 \le \lambda(x) \le 1, \ \lambda \uparrow \text{ in } x, \ (1 - \lambda(x))x^j \in L_1(R^+), \ j = 0, 1.$$
 (8)

f) We also assume that for each measurable function $\varphi(x)$, $0 \le \varphi(x) \le \eta$,

x > 0, the functions $K(x,t,\varphi(t))$ and $\int_{0}^{\infty} K(x,t,\varphi(t))dt$ are measurable with respect to t > 0 and x > 0.

Remark 1. It is easy to check that, if $K(x,t,\tau)$ is continuous in the totality of all arguments on set Ω_n , then the conditions c) and f) are fulfilled automatically.

It should be noted, that the equation (1) has been recently investigated by the author in [2] for the particular case $\lambda(x) \equiv 1$, $K^*(x) \equiv 0$.

In the present paper the following result is proved.

Theorem. Let the conditions a)—f) are fulfilled. Then the equation (1) has a nonnegative and bounded solution $f(x) \le \eta$, $x \in R^+$, and besides

$$\lim_{x \to +\infty} f(x) = \eta \ . \tag{9}$$

Moreover, if $\inf_{x \in R^+} \lambda(x) = \varepsilon_0 > 0$, then f(x) > 0.

§ 2. The Proof of Theorem.

Step I. First let us consider the following homogeneous linear equation with sum – difference kernel

$$S(x) = \int_{0}^{+\infty} [K_0(x-t) - K^*(x+t)]S(t)dt, \quad x > 0,$$
 (10)

with respect to an unknown function S(x). From results of [3] it follows that the equation (10) has nontrivial (possessing both positive and negative values) and bounded solution $\tilde{S}(x)$. Below it will be proved that besides the solution $\tilde{S}(x)$, equation (10) has a positive non-decreasing and bounded solution $S^*(x)$ with

$$\inf_{x \in R^+} S^*(x) > 0. \tag{11}$$

First we show that

$$K_0(x-t) > K^*(x+t), \quad (x,t) \in R^+ \times R^+.$$
 (12)

Indeed, let $x \ge t$, then from (5) it follows that $K_0(x-t) > K^*(x-t) \ge K^*(x+t)$. If we assume that x < t, then taking into account (3)–(5) we'll have

$$K_0(x-t) > K_0(t-x) > K^*(t-x) \ge K^*(x+t).$$

Thus, the inequality (12) is established. Now consider the following iteration:

$$S_{n+1}(x) = \int_{0}^{+\infty} [K_0(x-t) - K^*(x+t)] S_n(t) dt, \quad x > 0,$$

$$S_0(x) = c = \sup_{x \in \mathbb{R}^+} |\tilde{S}(x)|, \quad n = 0, 1, 2, \dots$$
(13)

It is easy to check by induction that

$$i_1$$
) $S_n(x) \downarrow \text{in } n; \ i_2$) $S_n(x) \uparrow \text{in } x; \ i_3$) $S_n(x) \ge \left| \tilde{S}(x) \right|, \ n = 0, 1, 2...$ (14)

For example, let's prove i_3): for n = 0 it follows from (13). Assuming that $S_n(x) \ge |\tilde{S}(x)|$ for any $n \in N$, and taking into account (12) we have

$$S_{n+1}(x) \ge \int_{0}^{+\infty} \left[K_0(x-t) - K^*(x+t) \right] \left| \tilde{S}(t) \right| dt \ge \left| \int_{0}^{+\infty} \left[K_0(x-t) - K^*(x+t) \right] \tilde{S}(t) dt \right| = \left| \tilde{S}(x) \right|.$$

The statement i_1) is proved in the same way. Now let us consider the statement.

The monotonicity of sequences $\{S_n(x)\}_{n=0}^{\infty}$ in x is easy to check, if the iteration (13) is rewritten in the following form

$$S_{n+1}(x) = \int_{-\infty}^{x} K_0(t) S_n(x-t) dt - \int_{x}^{+\infty} K^*(t) S_n(t-x) dt, \quad x > 0, \quad (15)$$

$$S_0(x) \equiv c, \quad n = 0, 1, 2 \dots$$

Thus, the sequence of functions $\{S_n(x)\}_{n=0}^{\infty}$ has a pointwise limit:

$$\lim_{n \to +\infty} S_n(x) = S^*(x) \le c. \tag{16}$$

Besides that, in accordance with the B. Levis theorem [4], the limit function $S^*(x)$ satisfies equation (10). From (14) it follows that

$$\left|\tilde{S}(x)\right| \le S^*(x), \ S^* \uparrow \text{ by } x, \text{ on } R^+.$$
 (17)

Now prove formulae (11). As $S^*(x) \ge 0$, $S^*(x) \ne 0$, then there exists $x_0 \ge 0$ such that

$$\alpha_0 = S^*(x_0) > 0. {18}$$

Then taking into account (12), (17), (18), we obtain from (10)

$$S^{*}(x) \ge \int_{x_{0}}^{+\infty} [K_{0}(x-t) - K^{*}(x+t)] S^{*}(t) dt \ge \alpha_{0} (\int_{-\infty}^{x-x_{0}} K_{0}(\tau) d\tau - \int_{x+x_{0}}^{\infty} K^{*}(\tau) d\tau) \ge$$

$$\ge \alpha_{0} \int_{x_{0}}^{\infty} (K_{0}(-t) - K^{*}(t) dt) > 0.$$

$$\geq \alpha_0 \int_{x_0}^{\infty} (K_0(-t) - K^*(t)dt) > 0$$

Therefore, the formulae (11) is true.

Step II. Now we consider the following more general linear homogenous equation:

$$\varphi(x) = \lambda(x) \int_{0}^{+\infty} [K_0(x-t) - K^*(x+t)] \varphi(t) dt, \quad x > 0,$$
 (19)

with respect to an unknown real function $\varphi(x)$.

Now along with equation (19) we consider the following non-homogenous integral equation

$$\psi(x) = (1 - \lambda(x))S^{*}(x) + \lambda(x) \int_{0}^{+\infty} [K_{0}(x - t) - K^{*}(x + t)]\psi(t)dt, x \in \mathbb{R}^{+}.$$
 (20)

As it follows from [5], equation (20) has a nonnegative nontrivial solution $\psi_0(x) \in L_1(R^+) \cap M(R^+)$ and besides $\psi_0(x) \leq S^*(x)$. It can be easily shown that the function $\psi_1(x) \equiv S^*(x)$ also satisfies the equation (20). Note that $\psi_0(x) \neq \psi_1(x)$ as $\psi_0(x) \in L_1(R^+) \cap M(R^+)$ and $\inf_{x \in R^+} \psi_1 > 0$.

It is obvious that the function $\varphi(x) = \psi_1(x) - \psi_0(x) \ge 0 \ (\ne 0)$ will satisfy the equation (19).

It is noteworthy that such an approach to the solution of equation (19) in case when $K^*(x) \equiv 0$ was suggested in [5].

Now we consider the following iteration:

$$\varphi_{n+1}(x) = \lambda(x) \int_{0}^{+\infty} [K_0(x-t) - K^*(x+t)] \varphi_n(t) dt, \qquad (21)$$

$$\varphi_0(x) \equiv \sup_{x \in P^+} \varphi(x), \quad n = 0, 1, 2..., \quad x > 0.$$

By the analogy of Step I the following facts can be established by induction:

$$(j_1) \varphi_n(x) \downarrow \text{in } n; \ j_2) \varphi_n(x) \uparrow \text{in } x; \ j_3) \varphi_n(x) \ge \varphi(x), \ n = 0,1,2...$$
 (22)

Therefore, there exists the limit

$$\lim_{n \to +\infty} \varphi_n(x) = \varphi^*(x) \le \sup_{x \in R^+} \varphi(x), \qquad (23)$$

and in addition $\varphi^*(x)$ satisfies the equation (19) and $\varphi^*(x) \uparrow$ in x. By analogy with formulae (11), it can be shown, that if $\inf_{x \to 0} \lambda(x) > 0$, then

$$\beta_0 = \inf_{x \in \mathbb{R}^+} \varphi^*(x) > 0.$$
 (24)

Step III. At this last stage a nontrivial solution of basic equation (1) will be constructed using formulae (24) and monotonicity of function $\varphi^*(x)$.

Let us consider the following iteration

$$f_{n+1}(x) = \int_{0}^{\infty} K(x, t, f_n(t)) dt, \quad f_0(x) \equiv \eta, \, n = 0, 1, 2..., \quad x \in \mathbb{R}^+ .$$
 (25)

From condition f) it follows that each function $f_n(x)$ is measurable.

Below we prove that

$$p_1) f_n(x) \downarrow \text{ in } n; p_2) f_n(x) \ge \frac{\eta}{\sup_{x \in R^+} \varphi^*(x)} \varphi^*(x), n = 0, 1, 2, ..., x \in R^+.$$

First let us prove p_1): in the light of the properties a) and b) we have

$$f_1(x) = \int_0^\infty K(x,t,\eta)dt \le \eta = f_0(x).$$

Assuming that $f_n(x) \le f_{n-1}(x)$ and taking into account (25) we obtain

$$f_{n+1}(x) \le f_n(x) .$$

Now we prove the inequality p_2): for n = 0 it is obvious. Assume that p_2) is true for $n = m \in \mathbb{N}$ and prove it in case of n = m + 1. In consequence of inequality (7) we obtain

$$f_{\text{\tiny{m+1}}}(x) \ge \int\limits_{0}^{\infty} K(x,t,\frac{\eta}{\sup \phi^{*}} \phi^{*}(t)) dt \ge \frac{\eta \lambda(x)}{\sup \phi^{*}} \int\limits_{0}^{\infty} (K_{0}(x-t) - K^{*}(x+t)) \phi^{*}(t) dt = \frac{\eta \phi^{*}(x)}{\sup \phi^{*}}.$$

Using on p_1 , p_2) we conclude that the sequence of functions $\{f_n(x)\}_{n=0}^{\infty}$ has a limit

$$\lim_{n \to +\infty} f_n(x) = f(x), \ x \in \mathbb{R}^+ \,, \tag{26}$$

satisfying

$$\frac{\eta \varphi^*(x)}{\sup_{x \in R^+}} \le f(x) \le \eta, x \in R^+. \tag{27}$$

As
$$f_n \downarrow$$
 by $n, K \in Carat(\Omega_\eta)$ and $f(x) \leq \int_0^\infty K(x,t,f_n(t))dt$, then from B.

Levis theorem we get that limit function f(x) satisfies the equation (1).

If $\varepsilon_0 = \inf_{x \in \mathbb{R}^+} \lambda(x) > 0$, then from (27) immediately follows that $\psi(x) > 0$. As

$$\varphi^*(x) \uparrow \sup_{x \in \mathbb{R}^+} \varphi^*(x)$$
, then from (27) we also obtain $\lim_{x \to +\infty} f(x) = \eta$.

Thus, the Theorem is proved.

§ 3. Below we give some particular examples of equation (1):

•
$$f(x) = \lambda(x) \int_{0}^{+\infty} [K_0(x-t) - K^*(x+t)] G(f(t)) dt, \quad x > 0,$$
 (28)

where

$$G \in C[0,\eta], \ G(x) \ge x, \ x \in [0,\eta], \ G \uparrow \text{ by } x \text{ on } [0,\eta], \ G(\eta) = \eta.$$
 (29)

•
$$f(x) = \int_{0}^{+\infty} R(x, f(t)) [K_0(x-t) - K^*(x+t)] G(f(t)) dt, \quad x > 0,$$
 (30)

where R(x,t) is a measurable function defined on $R^+ \times R^+$ with

- 1) $R(x,t) \in Carat(R^+ \times [0,\eta])$,
- 2) $R(x,t) \uparrow$ in t on $[0,\eta]$ for each fixed $x \in \mathbb{R}^+$,

3)
$$\lambda(x) \le R(x,t) \le \frac{1}{\int_{-\infty}^{x} K_0(\tau) d\tau - \int_{x}^{\infty} K^*(\tau) d\tau}, (x,t) \in R^+ \times [0,\eta].$$

As particular examples of such G and R we can take the following functions:

I.
$$G(x) = x^{\alpha}$$
, $\alpha \in (0,1)$, $\eta = 1$, $x \in R^{+}$.

II.
$$G(x) = x + \sin x$$
, $\eta = 1$, $x \in R^+$.

III.
$$G(x) = \sqrt{xe^{x-1}}$$
, $\eta = 1$, $x \in R^+$.

$$R(x,t) = \frac{F(x) - \lambda(x)}{2}u(t) + \frac{F(x) + \lambda(x)}{2}$$
,

where $F(x) = (\int_{-\infty}^{x} K_0(t)dt - \int_{x}^{\infty} K^*(t)dt)^{-1}$, and $u \in C[0,\eta]$, $0 \le u(t) \le 1$, $t \in [0,\eta]$, $u \uparrow t$ in t on $[0,\eta]$.

Remark 2. We note that it can be proved that the solution of equation (28) is increasing.

I thank the referee for useful remarks.

Received 16.04.2010

REFERENCES

- 1. Kufner A. and Fuchik S. Nonlinear Differential Equations. M.: Nauka, 1988, 304 p.
- Khachatryan Kh.A. Doklady Rossiyskoy Akademii Nauk. Matematica, 2009, v. 425, № 2, p. 462–465 (in Russian).
- 3. Yengibaryan B.N. Izv. NAN Armenii, Matematica, 1997, v. 32, № 1, p. 38–48 (in Russian).
- Kolmogorov A.N. and Fomin V.S. Elements of the Theory of Functions and Functional Analysis. M.: Nauka, 1981, 544 p.
- 5. **Arabadjyan L.G.** Differential Equations, 1987, v. 23, № 9, p. 1618–1622.

Խ. Ա. Խաչատրյան

Ոչ կոմպակտ օպերատորով Ուրիսոնի տիպի մի ոչ գծային ինտեգրալ հավասարման մասին

Աշխատանքում հետազոտվում է ոչ կոմպակտ օպերատորով Ուրիսոնի տիպի ոչ գծային ինտեգրալ հավասարում կիսառանցքի վրա։ Ենթադրվում է, որ Վիներ–Հոպֆ–Հանկելի օպերատորը ծառայում է որպես լոկալ մինորանտ Ուրիսոնի սկզբնական օպերատորի համար։ Ապացուցվել է դրական և սահմանափակ լուծման գոյությունը։ Գտնվել է կառուցված լուծման սահմանն անվերջությունում։ Աշխատանքի վերջում բերվել են օրինակներ։

Х. А. Хачатрян.

Об одном нелинейном интегральном уравнении типа Урысона с некомпактным оператором

В работе исследуется нелинейное интегральное уравнение типа Урысона с некомпактным оператором на полуоси. Предполагается, что оператор Винера-Хопфа-Ганкеля служит локальной минорантой для исходного оператора Урысона. Доказывается существование положительного и ограниченного решения. Вычисляется предел построенного решения в бесконечности. В конце работы приведены примеры.