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COMPARISON OF DIFFERENT PLANE MODELS IN FINITE ELEMENT
SOFTWARE IN STRUCTURAL MECHANICS
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In solution of plane problems of mechanics there are several elements used in
finite element software. In ANSYS — one of the best finite element software —
there are about six type of elements. We consider different Plane Models in
simple bending problem and compare the various results to distinguish the type of
elements, which are suitable for solving the problem under consideration.
Comparing results with analytical solutions shows that the Plane 42 and 82
models are the most suitable ones among the others. Also results in Plane 42 with
usual mesh is closer to the same problem solution with fine mesh than Plane 82 in
the same case.
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Introduction. The finite element method is a numerical method that can be
used for the accurate solution of complex engineering problems. The method was
first developed in 1956 for the analysis of aircraft structural problems. Thereafter,
within a decade, the potentialities of the method for the solution of different types
of applied science and engineering problems were recognized [1]. Over the years,
the finite element technique has been so well established, that today it is considered
one of the best methods for solving a wide variety of practical problems efficiently.
In fact, the method has become one of the active research areas for applied
mathematicians. One of the main reasons for the popularity of the method in
different fields of engineering is that once a general computer program is written, it
can be used for the solution of any problem simply by changing the input data [2].

Nowadays, we live a curious situation. On one hand, most structural
engineers and FE codes for computational solid mechanics are decanted. On the
other, the observed mesh-size and mesh-bias dependence exhibited by these
models make the academic world very suspicious about this format. Hence, a lot of
effort has been spent in the last 30 years to investigate and remedy the observed
drawbacks of this approach [3].

In some complicated problems, such as cracks and contacts with no effective
analytic solution, numerical analysis is strongly recommended. Finite element
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analysis is one of the usual ways to solve this kind of problems. In ANSYS
software, there are some elements to solve plane problems, so it is necessary to
choose the right type of elements type complex problems to obtain correct results.
Theoretical Aspects. We assume simple plane bending as illustrated
in Fig. 1.
.
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Fig. 1.

The displacement formula is [4]:
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where E is the module of elasticity; / is the moment of inertia; y is the vertical
displacement of the point in x position.
As we know for the beam of Fig. 1, solution of above differential equation

with the following boundary conditions Z—y =0,y _,=0is
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x=L

y=£(2L3—3L2x+x3).
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The maximum displacement (at x=0) is % .

The normal and shear stresses for the beam in Fig. 1 are obtained from relation (2)
and (4) respectively [5]. Relation (4) is obtained from relation (3) applying the beam

conditions:
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where Q is the first moment of area from y to natural axis; V' is the shear force
acting on section; ¢ is the beam thickness; o is the normal stress; 7 is the shear
stress; y is the distance of a such point, where the shear stress must be calculated,;
¢ is the maximum distance from beam surface to natural axis and A is the area of
cross section of the beam. For more information see [6]. It is clear that maximum
14
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There are several ways to calculate the beam bending frequency. Relation
(5) is obtained from Rayleigh approximation method and the error of this
approximated solution is less than 0.5% [7]:

f :%k«/Elg /oL, (5)
T
where f is the first mode lateral frequency; @ is the weight per unit length; g is
the volume coefficient that is chosen here to be equal to 1 and £ is the constant
that is equal to 3.53.

We proceed by solving the problem by different plane elements, and then
comparing the results with the analytical solution.

Choosing plane element instead of various type of ANSYS element is
discussed in [8]. The elements, that were used, are listed and explained below.

Different Plane Elements in ANSYS Software [9].

1. Plane 42 is used for two-dimension (2-D) modeling of solid structures as
illustrated in Fig. 2. The element can be used either as a plane element (plane stress or
plane strain) or as an axisymmetric element. The element is defined by four nodes,
having two degrees of freedom at each node: translations in the nodal x and y
directions. The element has plasticity, creep, swelling, stress stiffening, large deflection
and large strain capabilities.

Element coordinate
system (shown for
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Fig. 2.

2. Plane 82 is a higher order version of the 2-D, four-node element (Plane 42) as
illustrated in Fig. 3. It provides more accurate results for mixed (quadrilateral-triangular)
automatic meshes and can be used for irregular shapes without much loss of accuracy.
The 8-node elements have compatible displacement shapes and are well suited to model
curved boundaries.
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Fig. 3.

3. Plane 182 is used for 2-D modeling of solid structures like in Fig. 2. The
element can be used as either a plane element (plane stress, plane strain or
generalized plane strain) or an axisymmetric element. It is defined by four nodes,
having two degrees of freedom at each node: translations in the nodal x and y
directions. The element has plasticity, hyperelasticity, stress stiffening, large
deflection and large strain capabilities. It also has mixed formulation capability for
simulating deformations of nearly incompressible elastoplastic materials and fully
incompressible hyperelastic materials.
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4. Plane 183 is a higher order 2-D, 8-node or 6-node element like in Fig. 3.
Planel83 has quadratic displacement behavior and is well suited to modeling
irregular meshes.

This element is defined by 8 nodes or 6-nodes, having two degrees of
freedom at each node: translations in the nodal x and y directions. The element

may be used as a plane element (plane stress, plane strain and generalized plane
strain) or as an axisymmetric element. This element has plasticity, hyperelasticity,
creep, stress stiffening, large deflection and large strain capabilities. It also has
mixed formulation capability for simulating deformations of nearly incompressible
elastoplastic materials and fully incompressible hyperelastic materials. Initial stress
import is supported.

5. Plane 25 is used for 2-D modeling of axisymmetric structures with non-
axisymmetric loading as illustrated in Fig. 4. Examples of such loading are bending,
shear or torsion. The element is defined by four nodes, having three degrees of freedom
per node: translations in the nodal x, y and z direction. For unrotated nodal

coordinates, these directions correspond to the radial, axial and tangential directions
respectively.

The element is a generalization of the axisymmetric version of Plane 42 the
2-D structural solid element, where the loading need not be axisymmetric.
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Fig. 4.

6. Plane 83 is used for 2-D modeling of axisymmetric structures with non-
axisymmetric loading as illustrated in Fig. 5. Examples of such loading are ben-
ding, shear or torsion. The element has three degrees of freedom per node: trans-
lations in the nodal x, y and z direction. For unrotated nodal coordinates, these
directions correspond to the radial, axial and tangential directions respectively.

This element is a higher order version of the 2-D, four-node element (Plane
25). It provides more accurate results for mixed (quadrilateral-triangular) automatic
meshes and can tolerate irregular shapes without much loss of accuracy. The
element is also a generalization of the axisymmetric version of Plane 82 the 2-D
8-node structural solid element, where the loading need not be axisymmetric.
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Solution of the Problems.
The following parameters are considered for the beam:

L=2m, P=50N, b=0.0lm, h=02m, E=2x10°N/m?, p=1700kg/m’,

where & and b are the beam height and thickness respectively and p is the beam
density.

Substituting this values in (1)—(4), after calculation we obtain the values
of maximum displacement, normal and shear stresses and frequency: 0.2 m,
3x10° N/m®, 7.5x 10" N/m® and 2.78148 s, respectively.

Modeling in ANSYS software is implemented in two ways for each element:

1. Creation of the elements directly from nodes. In this way 3 samples
(1 element, 4 elements and 10 elements) are used.

2. Creation of the region then meshing it. In this way 2 samples (usual and
fine meshing) are used.

The analysis is done with three outputs: x and y displacement, normal and

shear stresses and first mode frequency.

Results.
Table 1
The maximum displacement (in meters) and error results
N Displacement
0
la;le 1 err., 4 err., 10 err., usual err., | fine mesh | err.,
P element | % |[elements| % | elements | % [ elements | % | elements %

42 | 1.51E-01| 24 |198E-01| 1 | 2.01E-01| 0.5 | 2.01E-01| 0.5 | 2.01E-01 | 0.5
82 | 1.51E-01| 24 |[1.98E-01| 1 | 2.01E-01 0.5 | 2.01E-01| 0.5 | 2.01E-01 | 0.5
182 | 5.09E-03| 97 |5.75E-02| 71 | 1.36E-01| 32 | 1.97E-01 [ 1.5 | 2.01E-01 | 0.5
183 | 5.09E-03| 97 |5.75E-02| 71 | 1.36E-01| 32 | 1.97E-01 [ 1.5 | 2.01E-01 | 0.5
25 | 8.67E-05| 100 | 1.38E-04( 100 [ 1.43E-04 | 100 | 1.46E-04 | 100 | 1.47E-04 | 100
83 | 1.L65E-05| 100 [ 9.64E-05( 100 | 1.09E-04 | 100 [ 2.67E-04 | 100 | 1.47E-04 | 100

Table 2
The maximum normal stress and error results
N Normal stress
0
plaile 1 err., 4 err., 10 err., usual err., | fine mesh | err.,

element % | elements | % | elements| % | elements | % elements %
42 | 1.50E+06] 50 |2.63E+06| 12 | 2.85E+06]| 5 3.09E+06| 3 3.05E+06 1.8

82 41667 98 | 8.24E+05| 72 | 2.70E+06( 10 [ 3.33E+06| 11 | 3.04E+06| 1.7
182 | 41667 98 | 8.24E+05| 72 | 2.11E+06( 70 | 3.21E+06| 107 | 3.97E+06 | 32
183 41667 98 | 8.24E+05| 72 [ 2.11E+06| 70 | 6.12E+06| 104 | 4.47E+06 | 49
25 1193.7 100 3390 100 | 4814.5 | 100 | 9827.9 | 100 31034 100
83 207.59 100 | 3326.8 | 100 5551.5 [ 100 [ 29352 100 60009 100
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Table 3
The maximum shear stress and error results
N Shear stress
0
plaile 1 err., 4 err., 10 err., usual err., | fine mesh | err.,

element % | elements | % | elements | % | elements | % elements %

42 50000 33 50000 33 50000 33 78254 4 84146 12
82 95833 27 52941 29 11111 85 70471 6 84425 13
182 | 95833 27 52941 29 11111 85 69484 73 70893 5.5
183 95833 27 52941 29 11111 85 87309 17 85604 14
25 0 100 75 100 185 99 1308 98 5166 93
83 197 100 146 100 435 99 2425 96 6930 90

Table 4
First mode frequency and error results
N Frequency
_ 1 err., 4 err., 10 err., usual err., | fine mesh | err.,
plane

element | % | elements| % | elements| % | elements | % | elements %
42 [2.71E+00| 2.5 [2.77E+00| 0.4 |2.75E+00| 1.1 [2.75E+00| 1.1 [ 2.75E+00 | 1.1
82 | 3.01E-05| 8.2 [5.12E+00| 84 [3.35E+00| 20 [2.75E+00( 1.1 | 2.75E+00 [ 1.1
182 | 1.48E+01| 47 |5.12E+00| 84 |[3.35E+00| 20 |2.78E+00( 0.05 | 2.75E+00 | 1.1
183 | 1.48E+01| 47 |5.12E+00| 84 |[3.35E+00| 20 |2.75E+00( 1.1 | 2.75E+00 [ 1.1
25 [3.64E-06| 100 [0.00E+00| 100 | 0.00E+00| 100 | 5.17E-06 | 100 [ 0.00E+00 | 100
83 |0.00E+00| 100 [0.00E+00| 100 [ 0.00E+00| 100 | 6.29E-06 | 100 | 3.01E-05 [ 100

Discussion.

The Table 1, representing the displacement, shows that Plane 25 and 83 are
not appropriate for this purpose. Plane 182 and 183 are appropriate only in usual
and fine mesh, and Plane 42 and 82 are appropriate for all conditions except in one
element mesh. In usual and fine mesh element the Plane 42 and 82 errors are less
than 1%.

The Table 2, representing the maximum normal stress, shows that Plane25
and 83 are not appropriate. Plane 182 and 183 only at fine mesh give some results
that are close to analytical solution although the error is not acceptable. Plane 42 and
82 are appropriate for usual and fine element meshes. In fine mesh element the Plane
42 and 82 errors are less than 2%.

The Table 3, representing the maximum shear stress, shows that Plane 25
and 83 are not appropriate. Other Plane element (182, 183, 42 and 82) are
appropriate only in usual and fine element meshes. There is about 5% error only in
Plane 42 and 82 at usual mesh.

The Table 4, representing the first mode frequency, shows that Plane 25 and
83 are not appropriate. Plane 82, 182 and 183 are appropriate only in usual and fine
meshes (error is less that 2%). Plane 42 is appropriate for all conditions.
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Conclusion. The results show that the analysis of the simple beam bending
with Plane 25 and 83 is not recommended in all cases. For displacement in usual
and fine mesh, Plane 42, 82, 182 and 183 results are close to analytical solution,
but in some problems fine mesh couldn’t be applied and usual mesh is considered
for use, so in this case Plane 42 and 82 are better to use. By the same reason as
above Plane 42 and 82 are suggested for normal and shear stresses. Frequency
results shows, that there is no difference between Plane 42, 82, 182 and 183, so
each of them is suitable for use.

In some mixed problems or problems where all the data must be calculated
in one procedure, Plane 42 or Plane 82 is recommended and better for use to solve
plane problems.
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P. Bugnhqunk

GQunnigyuspubph dkjuwmtthluyh yippwynp mwppkph dpugpnid ogurnugnnpdynn
wnwppkp hwpe Unnbukph hwdbdwnnipnip

dhppwynp wwpptph dpugpmd dbjuwthiuyh hwpp juunghpubph (nsdwb
pupwgpnid  Yhpwnymd i Uh pwih wwppkp pwquyhtt mwppbtp: ANSYS
spugpnid, npp Ykpguninp wnwppbph ujwgnyl dpugpkphg Ukl E onipy g
wnbuwlh nupp ju: Ondwb yupq fpunponid dkp ghunwpynud Bup wwppkp hwupp
unphjubp b tkpiuyuginid unwgqus wpynitptbph hwdbdwnnipniop® wyh
nwppiph wbuwlp pugwhuwynbine tyuwwnwlny, npntp Yhpwnkh o wnduyg
huunnh (nsdwt hwdwp: Upyniupubph hwdbdwwnnipynitip gnyg E wwhu, np 42 L
82 hwpp Unnkjutkpt wykjh Yhpwnkh b, pugh wyn, unynpuljut ppheubtpny 42-py
hwpp dnpbkh wpynibplbpt wykh Unwn ko wdju) pugphb, put dwip pphotibpny
82-nn Unnbihip:

b. SIzgm3ane.

CpaBHeHHe Pa3/IMYHBIX IJIOCKHX MoJeJIell, HCI0JAb3yeMbIX B IPOIPAMMe KOHEYHbIX
3/1eMEeHTOB MeXaHHKH KOHCTPYKIMii

[Ipu pemieHny MIOCKUX 3a/1a4 MEXaHUKU B MPOrpaMMe KOHEUHBIX 3JIEMEH-
TOB HCHOJB3YIOTCS HECKOJBKO Pa3NMYHBIX 0a30BBIX 3JeMEHTOB. B mporpamme
ANSYS, B ofHOW U3 Ny4YIIMX MPOrpaMM KOHEUHBIX 3JIEMEHTOB, UMEETCSI OKOJIO
LIECTH THIIOB JIeMEHTOB. B mpocrtoii 3agaue u3rnuba Mbl paccMaTpUBaeM pas3iind-
HBI€ IJIOCKHE MOJIENIN U IPOBOJUM CPaBHEHME IOJIYYEHHBIX PE3YJIbTAaTOB C LENbIO
BBISIBJICHUS TUIIOB 3JIEMEHTOB, KOTOpPbIE MPUMEHUMBI K PEIICHUIO TaHHOW 3a1auu.
CpaBHeHHE pe3yNbTaTOB MOKa3bIBAET, YTO IUIOCKME Mojenu 42 u 82 Oonee
MpUEeMJIEMBI, a TAK)Ke YTO IUIOCKask Mojaelb 42 ¢ OOBIYHOM AYEHKON maer Jydiive
pe3yabTaThl B JaHHOW 3aJa4de, 4eM IUTOCcKast MOeNb 82 ¢ MeNKO! siueKoil.



