ON A GENERALIZATION OF TAYLOR–MACLOURIN FORMULA FOR CLASSES OF DZRBASHYAN FUNCTIONS $C_{\alpha}^{*(\infty)}$

Authors

  • B. A. Sahakian Chair of Mathematical Analysis, YSU, Armenia
  • H. S. Kocharian Chair of Theory of Functions, YSU, Armenia

DOI:

https://doi.org/10.46991/PYSU:A/2010.44.2.003

Keywords:

Weil operators, Taylor–McLaurens type formulas

Abstract

In the paper for any $\rho\geq 1$ and an arbitrary increasing sequence of positive numbers

$\{\lambda_j\}_0^\infty$, the systems of operators and functions are introduced: $$\{L_\infty^{\frac{n}{\rho}}\}_0^\infty,~\{\varphi_n(x)\}_0^\infty,~x \in [0, +\infty),~L_\infty^{\frac{0}{\rho}}f \equiv f,~L_\infty^{\frac{n}{\rho}}f \equiv \prod\limits_{j=0}^{n-1}\left(D_\infty^{\frac{1}{\rho}}+\lambda_j\right)f, n\geq1,$$ where $D_\infty^{\frac{n}{\rho}}f\equiv D_\infty^{\frac{1}{\rho}} D_\infty^{\frac{n-1}{\rho}} f\left(1-\alpha=\dfrac{1}{\rho}\right)$; $\varphi_0(x)=e^{-\lambda_0^\rho x}$, $\varphi_n(x)=\sum\limits_{k=0}^n C_k^{(n)}e^{-\lambda_k^\rho x}$, $C_k^{(n)}=\left( \prod\limits_{j=0, (j\neq k)}^n\left(\lambda_j-\lambda_k\right)\right)^{-1}$. Some properties of these systems are investigated, as well as specific differential equations of fractional order are solved. Finally, for some classes of functions Taylor–McLaurens type formulas are obtained.

Downloads

Published

2010-04-26

How to Cite

Sahakian, B. A. ., & Kocharian, H. S. (2010). ON A GENERALIZATION OF TAYLOR–MACLOURIN FORMULA FOR CLASSES OF DZRBASHYAN FUNCTIONS $C_{\alpha}^{*(\infty)}$. Proceedings of the YSU A: Physical and Mathematical Sciences, 44(2 (222), 3–11. https://doi.org/10.46991/PYSU:A/2010.44.2.003

Issue

Section

Mathematics