ON A GENERALIZATION OF TAYLOR–MACLOURIN FORMULA FOR CLASSES OF DZRBASHYAN FUNCTIONS $C_{\alpha}^{*(\infty)}$
DOI:
https://doi.org/10.46991/PYSU:A/2010.44.2.003Keywords:
Weil operators, Taylor–McLaurens type formulasAbstract
In the paper for any $\rho\geq 1$ and an arbitrary increasing sequence of positive numbers
$\{\lambda_j\}_0^\infty$, the systems of operators and functions are introduced: $$\{L_\infty^{\frac{n}{\rho}}\}_0^\infty,~\{\varphi_n(x)\}_0^\infty,~x \in [0, +\infty),~L_\infty^{\frac{0}{\rho}}f \equiv f,~L_\infty^{\frac{n}{\rho}}f \equiv \prod\limits_{j=0}^{n-1}\left(D_\infty^{\frac{1}{\rho}}+\lambda_j\right)f, n\geq1,$$ where $D_\infty^{\frac{n}{\rho}}f\equiv D_\infty^{\frac{1}{\rho}} D_\infty^{\frac{n-1}{\rho}} f\left(1-\alpha=\dfrac{1}{\rho}\right)$; $\varphi_0(x)=e^{-\lambda_0^\rho x}$, $\varphi_n(x)=\sum\limits_{k=0}^n C_k^{(n)}e^{-\lambda_k^\rho x}$, $C_k^{(n)}=\left( \prod\limits_{j=0, (j\neq k)}^n\left(\lambda_j-\lambda_k\right)\right)^{-1}$. Some properties of these systems are investigated, as well as specific differential equations of fractional order are solved. Finally, for some classes of functions Taylor–McLaurens type formulas are obtained.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.