OPERATORS ON THE BESOV SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL IN $\mathbb{C}^n$

Authors

  • A.V. Harutyunyan Chair of Numerical Analysis and Mathematical Modelling, YSU, Armenia
  • W. Lusky Institute of Mathematics, University of Paderborn, FRG

DOI:

https://doi.org/10.46991/PYSU:A/2017.51.2.139

Keywords:

weighted Besov spaces, unit ball, projection

Abstract

In the present paper we consider the Toeplitz-$T_{\bar{h}}^{ \alpha}$ and differentiation-$D^\delta $ operators on the Besov spaces $B_p(\beta)$ for all $0< p<\infty.$ We show that $T_{\bar{h}}^{ \alpha}: B_p(\beta)\rightarrow B_p(\beta)$ for $\bar h\in H^\infty(B^n)$ and $D^\delta :B_p(\beta)\rightarrow B_p(\widetilde\beta)$, where  $\widetilde\beta=\beta +p\delta .$

Downloads

Published

2017-08-15

How to Cite

Harutyunyan, A., & Lusky, W. (2017). OPERATORS ON THE BESOV SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL IN $\mathbb{C}^n$. Proceedings of the YSU A: Physical and Mathematical Sciences, 51(2 (243), 139–145. https://doi.org/10.46991/PYSU:A/2017.51.2.139

Issue

Section

Mathematics