OPERATORS ON THE BESOV SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL IN $\mathbb{C}^n$
DOI:
https://doi.org/10.46991/PYSU:A/2017.51.2.139Keywords:
weighted Besov spaces, unit ball, projectionAbstract
In the present paper we consider the Toeplitz-$T_{\bar{h}}^{ \alpha}$ and differentiation-$D^\delta $ operators on the Besov spaces $B_p(\beta)$ for all $0< p<\infty.$ We show that $T_{\bar{h}}^{ \alpha}: B_p(\beta)\rightarrow B_p(\beta)$ for $\bar h\in H^\infty(B^n)$ and $D^\delta :B_p(\beta)\rightarrow B_p(\widetilde\beta)$, where $\widetilde\beta=\beta +p\delta .$
Downloads
Published
2017-08-15
How to Cite
Harutyunyan, A., & Lusky, W. (2017). OPERATORS ON THE BESOV SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL IN $\mathbb{C}^n$. Proceedings of the YSU A: Physical and Mathematical Sciences, 51(2 (243), 139–145. https://doi.org/10.46991/PYSU:A/2017.51.2.139
Issue
Section
Mathematics
License
Copyright (c) 2017 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.