ON A LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. UPPER BOUNDS
DOI:
https://doi.org/10.46991/PYSU:A/2018.52.3.180Keywords:
linear algebra, finite field, coset of linear subspace, linearized coveringAbstract
We obtain upper bounds of the complexity of linearized coverings for some special solutions of the equation $$ x_{1}x_{2}x_{3} \mathclose{+} x_{2}x_{3}x_{4} \mathclose{+} \cdots \mathclose{+} x_{3n}x_{1}x_{2} \mathclose{+} x_{1}x_{3}x_{5} \mathclose{+} x_{4}x_{6}x_{8} \mathclose{+} \cdots \mathclose{+} x_{3n-2}x_{3n}x_{2} \mathclose{=} b $$ over an arbitrary finite field.
Downloads
Published
2018-12-17
How to Cite
Gabrielyan, V. (2018). ON A LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. UPPER BOUNDS. Proceedings of the YSU A: Physical and Mathematical Sciences, 52(3 (247), 180–190. https://doi.org/10.46991/PYSU:A/2018.52.3.180
Issue
Section
Informatics
License
Copyright (c) 2018 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.