DEGENERATE FIRST ORDER DIFFERENTIAL-OPERATOR EQUATIONS
DOI:
https://doi.org/10.46991/PYSU:A/2019.53.3.163Keywords:
linear boundary value problems, spectral theory of linear operatorsAbstract
We consider boundary value problem for degenerate first order differentialoperator equation $Lu \mathclose{\equiv} t^{\alpha} u^{\prime} \mathclose{-} P u \mathclose{=} f $, $ u(0) \mathclose{-} \mu u(b) \mathclose{=} 0 $, where $ t \mathclose{\in} (0,b) $, $ a \mathclose{\geq} 0 $, $ P: H \mathclose{\rightarrow} H $ is linear operator in separable Hilbert space $ H $, $ f \mathclose{\in} L_{2, \beta} ((0,b),H) $, $ \mu \mathclose{\in} \mathbb{C} $. We prove that under some conditions on the operator $ P $ and number $ \mu $ the boundary value problem has unique generalized solution $ u \mathclose{\in} L_{2, \beta} ((0,b),H) $ when $ 2 \alpha \mathclose{+} \beta \mathclose{<} 1 $, $ \beta \mathclose{\geq} 0 $ and for any $ f \mathclose{\in} L_{2, \beta} ((0,b),H) $.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.