ON THE $ \langle \rho_j,W_j \rangle $ GENERALIZED COMPLETELY MONOTONE FUNCTIONS
DOI:
https://doi.org/10.46991/PYSU:A/2020.54.1.035Keywords:
operators of Rimman–Liouville type, \( \langle \rho_j,W_j \rangle \) generalized completelyAbstract
We consider sequences $ {\lbrace \rho_j \rbrace}_{0}^{\infty} $ $ (\rho_0 \mathclose{=} 1, \rho_j \mathclose{\geq} 1) $, $ {\lbrace \alpha_j \rbrace}_{0}^{\infty} $ $ (\alpha_0 \mathclose{=} 1, \alpha_j \mathclose{=} 1 \mathclose{-} (1/\rho_j )) $, $ {\lbrace W_j (x) \rbrace}_{0}^{\infty} \mathclose{\in} W $, where
$$ W \mathclose{=} \lbrace {\lbrace W_j (x) \rbrace}_{0}^{\infty} / W_0 (x) \mathclose{\equiv} 1, W_j (x) \mathclose{>} 0, {W}_{j}^{\prime} (x) \mathclose{\leq} 0, W_j (x) \mathclose{\in} C^\infty [0,a] \rbrace, $$
$ C^\infty [0,a] $ is the class of functions of infinitely differentiable. For such sequences we introduce systems of operators $ {\lbrace {A}_{a,n}^{\ast} f \rbrace}_{0}^{\infty} $, $ {\lbrace \tilde{A}_{a,n}^{\ast} f \rbrace}_{0}^{\infty} $ and functions $ {\lbrace {U}_{a,n} (x) \rbrace}_{0}^{\infty} $, $ {\lbrace {\Phi}_{n} (x,t) \rbrace}_{0}^{\infty} $. For a certain class of functions a generalization of Taylor–Maclaurin type formulae was obtained. We also introduce the concept of $ \langle \rho_j,W_j \rangle $ generalized completely monotone functions and establish a theorem on their representation.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.